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EXTENSIONS OF
RESPONDENT-DRIVEN
SAMPLING: ANALYZING
CONTINUOUS VARIABLES
AND CONTROLLING FOR
DIFFERENTIAL RECRUITMENT

Douglas D. Heckathorn*

Respondent-driven sampling (RDS) is a network-based method
for sampling hidden and hard-to-reach populations that has been
shown to produce asymptotically unbiased population estimates
when its assumptions are satisfied. This includes resolving a major
concern regarding bias in chain-referral samples—that is, produc-
ing a population estimate that is independent of the seeds (initial
subjects) with which sampling began. However, RDS estimates
are limited to nominal variables, and one of the assumptions re-
quired for the proof of lack of bias is the absence of differential
recruitment. One aim of this paper is to analyze the role of dif-
ferential recruitment, quantify the bias it produces, and propose a
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new estimator that controls for it. The second aim is to extend
RDS so that it can be employed to analyze continuous variables in
a manner that controls for differential recruitment. The third aim
is to describe means for carrying out multivariate analyses using
RDS data. The analyses employ data from an RDS sample of 264
jazz musicians in the greater New York metropolitan area, taken
in 2002.

1. INTRODUCTION

Sampling what are termed “hard-to-reach” populations poses special
problems because standard statistical sampling methods require a list
of population members (i.e., a “sampling frame”) from which the sam-
ple can be drawn, and constructing the frame using methods such
as household surveys is infeasible when the population is small rela-
tive to the general population and geographically dispersed, and when
population membership involves stigma or the group has networks
that are difficult for outsiders to penetrate (Sudman and Kalton 1986;
Watters and Biernacki 1989; Spreen 1992; Brown et al. 1999). Groups
with these characteristics are relevant to research in many areas, in-
cluding public health (e.g., drug users and commercial sex workers),
public policy (e.g., illegal immigrants and the homeless), and arts and
culture (e.g., jazz musicians and aging artists). In developing countries,
inadequate public records compound sampling problems, and conse-
quently much of the general population qualifies, in sampling terms, as
“hidden.”

Sampling hidden populations has traditionally involved a dilemma.
Some studies have employed probability sampling methods that provide
incomplete coverage of the target population. For example, venue-based
sampling (e.g., see MacKellar et al. 1996, Ramirez-Valles et al. 2005a)
misses those who shun the large public venues, such as street corners
and markets, from which subjects are recruited. Other studies have em-
ployed nonprobability sampling methods that provide more compre-
hensive coverage of the target population but yield only a convenience
(i.e., nonstatistically valid) sample. For example, snowball-type methods
(Goodman 1961; Erickson 1979) start with a set of initial respondents
(seeds), who refer their peers, these in turn refer their peers, and so on, as
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the sample expands from wave to wave. This approach has broader cov-
erage because even those who shun public venues are reached through
their social networks. Interest in these chain-referral methods has been
fueled by recognition of this power to access members of hidden popu-
lations. As the literature on the “small world” asserts, even in a nation as
large as the United States, every person is indirectly associated with ev-
ery other person through approximately six intermediaries (Watts 2003).
Therefore, everyone in the country could hypothetically be reached by
the sixth wave of a maximally expansive chain-referral sample. How-
ever, inferences from a convenience sample cannot be made validly to
the population from which the sample was drawn (Kalton 1983).

To overcome this dilemma, efforts have been made to trans-
form snowball methods into probability sampling methods (Frank 1979;
Snijders 1992; Spreen 1992; Frank and Snijders 1994). These are mem-
bers of a relatively new class of probability sampling methods termed
“adaptive” or “link-tracing” designs (Thompson and Frank 2000). This
paper extends one such method, respondent-driven sampling (RDS)
(Heckathorn 1997, 2002; Salganik and Heckathorn 2004; Volz and
Heckathorn forthcoming) in two ways. First, it introduces means for
analyzing continuous variables that are based on delineating the rela-
tionship between RDS and a previously introduced method for analyz-
ing chain-referral data, Sirken’s (1970) multiplicity sampling. Second,
based on partitioning the RDS sampling weight into a multiplicity-
based component and a component based on analyzing cross-group
recruitment patterns, it introduces means for controlling bias due to
differential recruitment, in which subgroups have both differing recruit-
ment patterns and recruitment effectiveness, and hence the more effec-
tive recruiting group’s recruitment patterns differentially affect sample
composition.

Section 2 reviews the fundamentals of multiplicity sampling and
RDS and introduces the required notation. Section 3 shows how the
weight for a dichotomous variable can be partitioned into multipli-
city and recruitment components, and introduces means for weighting
continuous variables based on the partitioning of the sampling weight.
Section 4 specifies the conditions under which differential recruitment
can introduce bias into the RDS population estimator, and introduces
a new estimator that controls for that bias. Finally, the conclusion dis-
cusses potential areas of further refinement of the RDS method.



154 HECKATHORN

2. RESPONDENT-DRIVEN SAMPLING
AND ITS RELATIONSHIP TO MULTIPLICITY SAMPLING:

BASIC CONCEPTS

2.1. Multiplicity Sampling

Multiplicity sampling was developed by Sirken (1970) in the late 1960s
for sampling rare populations. The approach is straightforward. A
multiplicity survey differs from a conventional survey because each
case may appear more than once. For example, a telephone directory
may have multiple entries for the same household. Consequently, when
households are sampled from such a directory, they must be weighted
based on multiplicity; for example, those with three phones have a
weight only one-third that of households with a single listed phone.
This approach is useful for increasing the efficiency with which house-
hold surveys can estimate the prevalence of rare events. The respon-
dent is asked not only whether a condition affects his or her house-
hold but also whether it affects a specified group of other house-
holds, such as those of surviving children and siblings. In this way,
information regarding the event becomes available not only from
the household surveyed but also from other households to which it
is connected. Multiplicity arises because an event can be reported
from multiple sources. In this way, the ability to detect rare events is
increased.

The multiplicity approach was extended to snowball samples by
Rothbart, Fine, and Sudman (1982). They proposed adding to the sur-
vey a question regarding the number of eligible respondents known to
the respondent. The size of this network then provides the basis for a
multiplicity adjustment, in which respondents are weighted by the re-
ciprocal of their network sizes. The intuition underlying this approach
is that respondents with large networks will have a greater probability
of inclusion, because more recruitment paths lead to them, and thus
respondents must be weighted by the reciprocal of their network sizes;
that is, for any individual i, its weight is 1/Di. The multiplicity weight
for any individual i, MW i, can therefore be defined as

MWi = 1
Di

. (1)
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TABLE 1(a)
RDS and Multiplicity Estimates for Gender, NYC Jazz Musicians

Gender of Recruit

Gender of Person Total Recruits by
Who Recruited Male Female Each Group (RB)

Male
Recruitment count 127 25 152
(Recruitment proportions) (0.836) (0.164) 1
Female
Recruitment count 51 40 91
(Recruitment proportions) (0.56) (0.44) 1
Total recruits of each group (RO) 178 65 243
Sample composition (including seeds) 0.737 0.263 1
Mean degree (multiplicity estimate) 109.225 102.566
Population estimate 0.7267 0.2752 1

(multiplicity estimate)
Equilibrium proportion 0.773 0.227 1
Sampling weight 1.033 0.907
Population estimate (standard 0.7619 0.2381 1

RDS estimate)
Degree component 0.985 1.049
Recruitment component 1.048 0.864
Mean degree (adjusted estimate) 110.513 103.849
Population estimate (adjusted 0.7620 0.2380 1

estimate)

(Here and elsewhere in the paper, superscripts are employed to index
individuals, and subscripts are employed to index groups.) These weights
can then be employed to analyze any variable; for example, Tables 1(a)
and 1(b) show the multiplicity estimates for two nominal variables, gen-
der and having received airplay; Tables 2(a) and 2(b) shows the multipli-
city estimates for two continuous variables divided by quintiles, age and
degree; and Figure 1 shows them analyzed as continuous variables.

A limitation of this approach is that it fails to control for bias
resulting from differential recruitment. For example, among New York
City jazz musicians, recruitment effectiveness varied by gender; though
females made up 26 percent (65/243) of respondents, they produced
37 percent (91/243) of the recruits (see Table 1(a)). Consequently, the
female patterns of recruitment can be expected to have differentially af-
fected the sample. This is consequential, because recruitment patterns
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TABLE 1(b)
RDS and Multiplicity Estimates for Airplay, NYC Jazz Musicians

Airplay of Recruit

Airplay of Person Total by Each
Who Recruited Yes No Group (RB)

Yes
Recruitment count 155 33 188
(Recruitment proportion) (0.834) (0.176) 1
No
Recruitment count 40 11 51
(Recruitment proportion) (0.784) (0.216) 1
Total recruits of each group (RO) 195 44 239
Sample composition (including seeds) 0.822 0.178 1
Mean degree (multiplicity estimate) 116.66 79.074
Population estimate (multiplicity estimate) 0.759 0.241 1
Equilibrium proportion 0.817 0.183 1
Sampling weight 0.914 1.396
Population estimate (standard RDS estimate) 0.752 0.248 1
Degree component .92 1.357
Recruitment component 0.994 1.028
Mean degree (adjusted estimate) 118.174 79.717
Population estimate (adjusted estimate) 0.751 0.249 1

differed by gender; females recruited 44 percent (40/91) other females
whereas males recruited only 16 percent females (25/152), so females
were oversampled. Therefore, both elements required for the presence
of differential recruitment bias are present—differential recruitment
effectiveness and different recruitment patterns. Based on the same logic,
musicians who received airplay were undersampled.

2.2. Respondent-Driven Sampling

RDS employs both the degree data upon which multiplicity sampling de-
pends, and also information on patterns of recruitment within the sam-
ple, specifically, the proportions of recruitment across groups. The RDS
estimator is derived from an analysis of network structure. (For compre-
hensive descriptions, see Heckathorn [2002], Salganik and Heckathorn
[2004], and Volz and Heckathorn [forthcoming]). The connection be-
tween network structure and a population estimator is based on the
reciprocity model, named for a feature of the networks of friends and
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FIGURE 1(a). Age — Multiplicity and weighted estimates by aggregation level (AL) (using
unweighted estimate as a baseline).

FIGURE 1(b). Degree — multiplicity and dual-component RDS estimate (using unweighted
estimate as a baseline).

acquaintances through which peer recruitment takes place. Ties are re-
ciprocal, so a link from any individual i to j implies that a link also exists
from j to i. Consequently, no distinction need be made between ties to
an individual (the in-degree) and ties from the individual to others (the
out-degree), since the two are equivalent. In such systems, reciprocity
also extends to ties linking groups.

The RDS estimator is based on this elemental feature of recipro-
cal networks. In a two-group system, the number of ties from group X
to Y is the product of four parameters. The first is the population size,
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N. For example, in a system consisting of two disjoint groups, X and
Y , with union equal to the population, and where NX is the number of
Xs, and NY the number of Ys:

N = NX + NY. (2)

The second is the proportional size of the group, PX , i.e.,

PX = NX

N
. (3)

The third is the group’s mean degree. Where TX is the number ties of
group X , the group’s mean degree, DX , is

DX = TX

NX
. (4)

The model therefore relies on the most basic measure of centrality. This
measure is used rather than more complex measures of centrality, such as
eigenvector centrality (Bonacich 1972), that reflect the relative influence
of individuals or groups. What is relevant for this model is merely the
number of connections to other nodes, because this reflects the size
of the pool from which potential recruits are drawn. The fourth and
final parameter is the proportion of cross-cutting ties. Where TXY is the
number of ties from X to Y , the group’s proportion of cross ties, SXY ,
is

SXY = TXY

TX
. (5)

The number of cross-group ties from group X to Y , TXY , is the product
of these four terms. That is,

TXY = NPX DXSXY. (6)

In this expression, the product of the first two terms is the size of the
group (i.e., N∗PX = NX ), the product of the first three terms is the
number of ties of the group (i.e., NX

∗DX = TX ), and consequently the
product of all four terms is the number of cross-cutting ties (i.e., TX

∗

SXY = TXY ).
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When the ties in a system are reciprocal, such that in-degrees and
out-degrees are equivalent, the number of cross-cutting ties will be equal
in each direction, i.e., for groups X and Y ,

TXY = TYX. (7)

Given that the groups’ proportional sizes sum to one, and expanding the
expression for cross-cutting ties in each direction yields the following
equation system,

1 = PX + PY

NPX DXSXY = NPY DYSYX.
(8)

These can be solved to yield group X ’s proportional size, PX , as follows:

PX = SYX DY

SYX DY + SXY DX
. (9)

This equation provides the basis for an estimator for proportional group
size, P̂X, based on two types of network information. One is the esti-
mated proportion of cross-cutting ties (the “S” terms), and estimated
mean network size (the “D” terms”), both of which, as will be seen
below, can be derived from chain-referral data.1 That is,

P̂X = ŜYX D̂Y

ŜYX D̂Y + ŜXY D̂X
. (10)

For example, using the estimates for degree and cross-cutting ties from
Table 1(a), the estimated proportion of females, P̂F , is calculated as
follows:

P̂F = 0.164 · 109.255
0.164 · 109.255 + 0.56 · 102.566

= 0.238. (11)

1For an alternative derivation of an RDS estimator, see Volz and
Heckathorn (forthcoming). This approach offers improved analytical tractability
and analytical variance estimation, and it provides means for reducing the variance
of estimates. It also allows for the estimation of continuous variables; however, the
ability to control for differential recruitment bias is limited to nominal variables, a
limitation that may be overcome in subsequent work.
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This estimator contrasts with the “face value” estimator typically used
in analyzing chain-referral data, the proportion of each group in the
sample—that is, where nX is the number of Xs in the sample and n is
the sample size, the sample proportion, CX , is

CX = nX

n
. (12)

The RDS estimator has been shown to be asymptotically unbi-
ased (Salganik and Heckathorn 2004), which means that bias is on the
order of 1/[sample size], so bias is negligible in samples of meaningful
size (Cochran 1977). The proof is based on six assumptions about the
sampling process:

1. Respondents know one another as members of the target popula-
tion, so ties are reciprocal.

2. Respondents are linked by a network composed of a single compo-
nent.

3. Sampling occurs with replacement.
4. Respondents can accurately report their personal network size, de-

fined as the number of relatives, friends, and acquaintances who fall
within the target population.

5. Peer recruitment is a random selection from the recruiter’s network.
6. Each respondent recruits a single peer.

The first three assumptions serve to specify the conditions under
which RDS is an appropriate sampling method. First, peer recruitment
is a feasible sampling strategy only if respondents know one another
as members of the target population. Consequently, it would not be
suitable for sampling tax cheats, who can be friends and not know they
share membership in that hidden population. However, it is suitable for
sampling populations linked by a “contact pattern,” such as recipro-
cal ties created when jazz musicians perform with one another or when
drug users purchase drugs. Second, ties must be dense enough to sus-
tain the chain-referral process. When respondents recruit friends and
acquaintances, this is rarely problematic, because populations linked by
a contact pattern tend to be gregarious. For example, Heckathorn and
Jeffri (2003) found that the typical New York City jazz musician knew
about 100 other musicians and none knew fewer than 20, a number
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greater than that generally required for a network to form a single large
component. In contrast, allowing recruitment only of musicians who
perform together would not be advisable, because the network would
comprise many small components. Third, sampling is assumed to occur
with replacement, so recruitments do not deplete the set of respondents
available for future recruitment. The implication is that the sampling
fraction should be small enough for a sampling-with-replacement model
to be appropriate.

The fourth assumption states that respondents can accurately re-
port the number of relatives, friends, and acquaintances who are mem-
bers of the target population. Studies of the reliability of network indi-
cators suggest that this is one of the more reliable indicators (Marsden
1990). Furthermore, the RDS population estimator depends not on
absolute but on relative degree, so variations in name generators that
inflate or deflate the reports in a linear manner have no effect on the
estimates. However, violations of this assumption about accurate re-
porting remain a source of bias on which additional research would be
useful.

The fifth assumption specifies that respondents recruit as though
they are choosing randomly from their networks. This is based on the
assumption that recruitment will be nonbiased because respondents
would lack an incentive or ability to coordinate to selectively recruit
any particular group. Evidence for this assumption has been provided
by studies that compared self-reported network composition with ac-
tual recruitment behavior and found a strong association (Heckathorn
et al. 2002; Wang et al. 2005), and also by a study in which an “in-
dex of reciprocity” measured the fit between the reciprocity model and
recruitment patterns (Ramirez-Valles et al. 2005b).

The plausibility of the random recruitment assumption is deter-
mined, in part, by the research design. For example, if a research site
were located in a dilapidated building in a high-crime neighborhood,
recruiting residents of the neighborhood might be easy, but recruit-
ing peers from more comfortable neighborhoods who felt threatened
in such neighborhoods might prove difficult, so sampling would be
nonrandom. However, if research identifies neutral turf in which all
potential respondents feel safe, the random recruitment assumption is
made more plausible. Similarly, if incentives are offered that are salient
to respondents from all income groups (e.g., a choice between receiv-
ing a monetary reward and making a contribution to a charity of the
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respondent’s choice), the random recruitment assumption is made more
plausible. Also, if respondents who live in areas distant from the inter-
view site have limited access to means of transportation, that group will
be undersampled. If either additional interview sites are made available
that are closer to them or if the boundaries of the target population are
reduced to include only those respondents with ready access to the orig-
inal interview site, the random recruitment assumption is made more
plausible. Finally, if one formulated the network-size question using
a time frame of five years, it is probable that persons who had been
seen between one and five years ago would be undersampled, so sam-
pling would be nonrandom. However, if research shows that the great
majority of recruits are seen at least once per month, using the time
frame of a month would make the random recruitment assumption more
plausible.

The sixth assumption, that each respondent recruits exactly one
peer, serves to preclude differential recruitment. This is an especially
problematic assumption because some respondents fail to recruit, so
the chain-referral process can die out. For example, in Klovdahl’s (1989)
“random walk” approach, recruitment is limited to three waves, and only
one-quarter of chains attain that length. The sample therefore consists
of multiple short, linear chains. This introduces the potential for differ-
ential recruitment, e.g., groups that recruit less effectively than others
will be overrepresented on the recruitment chain’s terminal node. In
RDS studies it is customary to establish a nonunitary quota of permit-
ted recruitments, generally a limit of three or four. This number has
been found to produce robust referral chains. For example, in a study
of New York City drug users the quota was three, recruitment began
with eight seeds and over the course of 18 waves yielded a sample of 618
(Abdul-Quader et al. 2006). The NYC jazz study employed a quota of
four, with ten seeds, and one seed produced a recruitment chain with
more than 100 other respondents over the course of ten waves. Such
recruitment introduces considerable potential for differential recruit-
ment, and to varying degrees this occurs in all RDS data sets. An aim of
this paper is to propose a new estimator that controls for this source of
bias.

The RDS estimator is calculated from two distinct terms, the
proportion of cross-cutting ties between groups and the mean degree
of each group. The sections that follow discuss the ways in which these
parameters can be estimated based on chain-referral data.
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2.2.1. Estimating the Proportion of Cross-Cutting Ties
Deriving the first type of information requires documenting who re-
cruited whom, usually based on recruitment coupons with unique serial
numbers that are recorded when given to the recruiter and again when
returned by the recruit. For each variable to be analyzed, a recruitment
matrix, R, is calculated, where RXY is the number of recruitments by
members of group X of members of group Y ,

R =
[

RXX RXY

RYX RYY

]
(13)

In this matrix, the row sums reflect the number of recruitments by mem-
bers of each group—for example, the number of recruitments by group
X , RBX , is

RBX = RXX + RXY. (14)

In the analysis of recruitment by gender (see Table 1A), 152 respondents
(127 males and 25 females) were recruited by males, and 91 respondents
(51 males and 40 females) were recruited by females.

In the recruitment matrix, the column sums reflect the number
of recruitments of members of each group—for example, the number of
recruitments of group X , ROX , is

ROX = RXX + RYX. (15)

In the analysis of recruitment by gender (see Table 1A), there were 178
recruitments of males, 127 by other males and 51 by females.

The number of cases in the recruitment matrix, it should be noted,
is necessarily less than the sample size, because seeds do not have a
recruiter. In the absence of missing data, the number of cases in the
recruitment matrix, (i.e., the number of recruits, RO, or equivalently,
the number of recruitments, RB), is the sample size, n, less the number
of seeds, nS,

RO = RB = n − ns (16)

Hence for purposes of RDS analyses, the effective sample size is the num-
ber of cases less the number of seeds. Of course, this number is further
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reduced by missing data. In RDS missing data is especially problematic,
because when data for a respondent is missing, neither its recruitment,
nor recruitments by it, appear in the recruitment matrix. For exam-
ple, if A is recruited by B, who recruits C, D, and E, and B’s data is
missing, then the number of recruitments is reduced by four, because
recruitments A → B, B → C, B → D, and B → E, are lost.

Based on the recruitment matrix, the recruitment selection pro-
portions can be calculated. These are terms that serve as the estimators
for the proportion of cross-group ties. Specifically, the ratio of cross-
group recruitments, RXY , and of total recruitments by the group, RBX ,
provides an estimator for SXY , that is,

ŜXY = RXY

RBX
. (17)

For example, in the analysis of recruitment by gender in Table 1A, the
estimated selection proportion from females to males is 51/91 = 0.56.

This estimator has been shown to be unbiased (Salganik and
Heckathorn 2004:214) because based on the random-recruitment as-
sumption the proportion of ties that become the basis for peer recruit-
ment must be equal across subgroups. That is, if the sampling fraction
for X ’s ties is SF , then the number of recruitments by X is the product
of X ’s number of ties, TX , and the sampling fraction, SF , i.e.,

RBX = TX · SF. (18)

Furthermore, from the random recruitment assumption, the sampling
fraction for X ’s cross cutting ties, TXY , must be the same, otherwise
cross-cutting ties would be either oversampled or undersampled, hence

RXY = TXY · SF. (19)

Therefore, the above expression for ŜXY can be expanded as follows:

ŜXY = RXY

RBX
= TXY SF

TX SF
. (20)

Given that the SF terms cancel, RXY /RBX provides an unbiased estima-
tor for TXY /TX . The implication is that the first element from which the
RDS estimator is calculated, the cross-group recruitment proportion,
is free from bias due to differential recruitment.
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2.2.2. Estimating Degree
The second element from which the RDS estimator is calculated is
the estimated mean degree of each group. This estimator employs
a multiplicity approach. That is, consistent with this approach, re-
spondents are assumed to be recruited in proportion to their degree.
Respondents of higher degree are oversampled, so in estimating a
group’s degree, respondents are weighted by the inverse of their degree
(Salganik and Heckathorn 2004:215; Volz and Heckathorn forthcom-
ing). For any group X , where nX is the number of respondents falling
within that group, and Di is the degree of respondent i, the estimated
mean network size for group X , D̂X, is

D̂x = nX
nX∑
i=1

1
Di

. (21)

Salganik and Heckathorn (2004:218) showed that both the numerator
and the denominator of this expression correspond to Hansen-Hurwitz
(1943) estimators, which are known to be unbiased (Brewer and Hanif
1983). It is also known that the ratio of these estimators is asymptotically
unbiased (Cochran 1977), with bias on the order of 1/[sample size],
which means that bias falls as sample size increases.

The RDS estimator (equation 10) includes degree estimates in
both the numerator and the denominator, each of which is asymptoti-
cally unbiased. The ratio of asymptotically unbiased estimators is also
asymptotically unbiased; therefore the RDS estimator is also asymp-
totically unbiased (Heckathorn and Salganik 2004:219).

A limitation of this approach is that it cannot be used to analyze
continuous variables. For example, respondents ranged in age from 20
to 101, and when partitioned by year, there were 54 distinct ages. Yet
analysis based on a 54 × 54 matrix with 2916 cells among which the 264
respondents would be distributed is infeasible. Of course, the sample
could be aggregated—for example, divided by quartiles or quintiles—
but this would entail loss of information. Section 3 introduces a means
for analyzing continuous variables that reduces but does not wholly
eliminate this loss of information.

A second limitation of the approach is that this way of estimating
mean degree does not control for differential recruitment. For example,
if respondents of high degree associate differentially with one another
and also recruit more effectively than those of lower degree, high-degree
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respondents will be oversampled. Section 4 introduces means for con-
trolling for this source of bias based on Section 3’s reformulation of
the RDS sampling weight to accommodate analysis of continuous vari-
ables.

3. DUAL-COMPONENT SAMPLING WEIGHTS

3.1. Partitioning the RDS Sampling Weight

For any group X , the RDS sampling weight, Wx, is the ratio of the pop-
ulation estimate for the group, P̂X, and the proportional composition
of the sample, CX . Therefore,

Wx = P̂x

Cx
. (22)

A step toward endowing RDS with the multiplicity approach’s ability
to analyze continous variables is to divide this weight into two compo-
nents, one that adjusts for differential recruitment and one that adjusts
for differences in degree. This can be done by projecting what the sample
composition would have been in the absence of both factors. Heckathorn
(2002) suggests a means by which this can be done. It involves model-
ing the recruitment process as a first-order Markov process. The state
space is fixed, with each group corresponding to a state, and the recruit-
ment proportions in the recruitment matrix are interpreted as transition
probabilities. The sampling process is then modeled as sequences of
states governed by the transition probabilities. For example, if sampling
began (wave zero) with a female seed, from Table 1A, there would be a 44
percent probability that the next respondent would be female, and a 56
percent probability that the next recruit would be male. If the first-wave
recruit was male, there would be a 16 percent probability that the next
respondent would be female, and an 84 percent probability that the next
recruit would be male. The sample expands in this stochastic manner in
subsequent waves. When modeled in this manner, the sample reaches an
equilibrium composition that is independent of the state (i.e., the initial
respondent, or equivalently, the “seed”) from which it began (Kemeny
and Snell 1960; Heckathorn 1997). In a two-state system, with groups
X and Y , the equilibrium is defined by the following equation system:

1 = EX + EY

EX = SXX EX + SYX EY.
(23)
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Substituting 1-SXY for SXX , and solving for EX yields the following:

EX = SYX

SYX + SXY
. (24)

From this expression, it is clear that equilibrium is a term that is mean-
ingful only at the group level, for its definition is based on the propor-
tions of cross-cutting ties across groups, not on individual or unitary
group attributes.

The equilibrium provides the means to project what the sample
composition would have been in the absence of differences in degree
(Heckathorn 2002:25). This can be shown by assuming that both groups
have equal degree and calculating the RDS estimator; that is, if groups
X and Y both have equal degree, then D̂X can be substituted for D̂Y in
the expression for the RDS estimator in equation (10), and by algebraic
manipulation. This expression can be simplified as

P̂X = ŜYX

ŜYX + ŜXY
if D̂X = D̂Y, (25)

which is equivalent to that for the Markov equilibrium. Conse-
quently, the equilibrium can be seen as projecting what the sam-
ple composition would have been had degrees been uniform across
groups.

A similar argument (Heckathorn 2002:21) shows that the Markov
equilibrium also projects what the sample composition would have been
in the absence of differential recruitment. The equilibrium is calculated
exclusively from the transition probabilities, and above it was shown
that these are independent of differential recruitment. Consequently, a
term calculated from the transition probabilities is also independent of
differential recruitment.

Because the Markov equilibrium provides a baseline indicator
showing what the sample composition would have been in the absence
of both differential recruitment and differences in degree, it thereby pro-
vides the means for partitioning the RDS sampling weight to disentangle
these two factors, as follows:

WX = P̂X

CX
= P̂X

ÊX
· ÊX

CX
. (26)
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Here the term P̂X
/

ÊX can be termed the degree component, DCX :

DCX = P̂X

ÊX
. (27)

When degrees are equal, P̂X = ÊX. Their ratio then has the neutral value
of unity—that is, DCX = 1. In contrast, if X has greater mean degree
than Y , group X is oversampled, so the estimated proportional size of
the group must be correspondingly deflated such that P̂X < ÊX, and the
value of DCX is then less than one. By the same logic, if group X has
a smaller mean degree than Y , then P̂X > ÊX, and the value of DCX is
greater than one. This inverse relationship between DC and the group’s
mean degree derives from the presence of the latter in the denominator
of the population estimator.

The second term of the partitioned weight, ÊX/CX, can be termed
the recruitment component, RCX . When ÊX and CX unequal, indicating
the presence of differential recruitment, their ratio has a nonneutral (i.e.,
nonunitary) value, hence

RCX = ÊX

CX
. (28)

As thus defined, the product of the degree and recruitment components
yields the sampling weight,

WX = DCX · RCX. (29)

In the definition of the degree and recruitment components, it is
useful to be clear about the role played by this equilibrium. The question
is not whether it is behaviorally plausible to model recruitment as a
first-order Markov process, though evidence for this has been presented
(Heckathorn 1997:83), but rather that this term provides the means
for abstracting from the effects of both differential recruitment and
differences in degree. For example, the degree term does not appear in
the equation for the equilibrium; it is calculated exclusively from the
selection proportions. Consequently, for the equilibrium degrees are
irrelevant, and comparing the value of that term with the population
estimate for which degrees matter provides the means for quantifying
the effects that degrees have on the estimation process.
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When viewed in light of the distinction between the degree and
recruitment components, the gender and airplay variables represent con-
trasting cases. For gender, the recruitment component is the principal
determinant of the sample weight. The mean departure from unity of
the recruitment component for males and females is 2.9 times greater
than that of their degree component. For airplay the relationship is
reversed. The mean departure from unity of the degree component
for musicians with and without airplay is 12.9 times greater than that
of their recruitment component. This greater dependence of airplay
on the degree component reflects the dependence of degree on air-
play; musicians with airplay had networks that were 47 percent larger
than those without airplay. In contrast, gender is a weak determinant
of degree: males have only 5.5 percent larger networks than females.
(For illustrations of the above-described calculation procedures, see
Appendix A.)

3.2. Extending the Analysis to Nondichotomous Variables

A second step in extending the dual-component analysis to continuous
variables is showing how three-category and larger variables are ana-
lyzed. The Markov equilibrium extends to nondichotomous variables
in a straightforward manner. For a system with M categories, calculat-
ing the equilibrium requires solving the following system of equations
(Kemeny and Snell 1960):

1 = Ê1 + Ê2 + · · · + ÊM

Ê1 = Ŝ11 Ê1 + Ŝ21 Ê2 + · · · + ŜM1 ÊM

Ê2 = Ŝ12 Ê1 + Ŝ22 Ê2 + · · · + ŜM2 ÊM

...
Ê(M−1) = Ŝ1(M−1) Ê1 + Ŝ2(M−1) Ê2 + · · · + ŜM(M−1) ÊM.

(30)

This consists of a system of M linear equations, with M unknowns so
when the selection proportions are known, the equilibrium has a unique
solution.

Calculating the RDS population estimator for variables with
more than three categories is less straightforward, though it involves
solving a somewhat similar system of equations. As in the two- categories
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case (equation 8), the first equation states that proportional population
sizes must sum to one. The other equations express the reciprocity prin-
ciple for each of the M∗(M-1)/2 pairs of groups. For example, a system
with three disjoint groups is described by four equations, as follows,
where the population size parameter, N, is omitted because it cancels
out:

1 = P̂1 + P̂2 + P̂3

P̂1 D̂1 Ŝ12 = P̂2 D̂2 Ŝ21

P̂1 D̂1 Ŝ13 = P̂3 D̂3 Ŝ31

P̂2 D̂2 Ŝ23 = P̂3 D̂3 Ŝ32.

(31)

When the “D” and “S” terms are calculated in the above-described man-
ner, this yields a system of four linear equations with three unknowns,
the “P” terms. Consequently, the system is overdetermined, because the
number of equations exceeds the number of unknowns. This issue arises
for any variable that contains three or more categories. The most stan-
dard statistical approach to solving such systems is linear least squares,
(Farebrother 1988), which employs a regression-like logic to reconcile
conflicts among the equations. For a discussion of this approach, as
applied to RDS, see Heckathorn (2002:23).

An alternative approach, termed data smoothing (Heckathorn
2002:24–25), derives from drawing information regarding the popula-
tion from the reciprocity model. The essential idea is that if ties in the sys-
tem are reciprocal, if all groups recruit with equal effectiveness (i.e., for
any group X , ROX = RBX ), and if recruitments from personal networks
are random, then cross-group recruitments will be equal for each pair of
groups (i.e., for any groups X and Y , RXY = RYX ). Consequently, any
differences reflect merely stochastic variation in the recruitment process,
so the best estimate for the number of cross-recruitments between each
pair of groups is the mean of recruitments in each direction. This form
of data reduction has several advantages. First, by reducing the number
of terms from which population estimates are calculated, it solves the
problem of overdetermination because the additional equations that
produce the overdetermination problem are rendered redundant and
hence can be ignored. Second, each cross-recruitment term is calcu-
lated from twice as much data, so estimates based upon them become
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more efficient, as reflected in narrower confidence intervals (Volz
and Heckathorn forthcoming). For example, if the analysis of age in
Table 2(a) is carried out using linear-least squares, the design effect
is 2.1, but this falls to 1.6 when data smoothing is used. Finally, data
smoothing preserves a feature crucial for the dual-component approach,
in which the RDS population estimator equals the equilibrium when de-
grees are equal. For this reason, data smoothing will be employed in this
paper for all three-category and larger variables. It will not be employed
for dichotomous variables because point estimates would be unaffected.
However, for purposes of variance estimation data smoothing is useful
even in the two-category case (see Volz and Heckathorn forthcoming).

Data smoothing is a two-step process. The first step is projecting
what the recruitment matrix would have looked like in the absence of
differential recruitment. This requires transforming the matrix using
two conditions: (1) recruitment patterns, as reflected in the selection
proportions, do not change; (2) the row and column sums are equal,
so recruitment effectiveness is equal for all groups (i.e., for any group
X , ROX = RBX ). This transformation has been termed “demographic
adjustment” (Heckathorn 2002:21; Volz and Heckathorn forthcoming)
and when used in other contexts is termed “raking.” Each element in
the transformed recruitment matrix is the product of three terms: (1)
the selection proportion, (2) the equilibrium for the recruiter’s group,
and (3) the total number recruitments. For example, for recruitment
count RXY , the corresponding demographically adjusted recruitment
count R

∗
XY is ŜXYÊX RB. For a system with M categories, the adjusted

recruitment matrix R
∗

is

R∗ =


Ŝ11 Ê1 RB Ŝ12 Ê1 RB · · · Ŝ1MÊ1 RB

Ŝ21 Ê2 RB Ŝ22 Ê2 RB · · · Ŝ2MÊ2 RB
...

...
. . .

...
ŜM1 ÊMRB ŜM2 ÊMRB · · · ŜMMÊMRB



=


R∗

11 R∗
12 · · · R∗

1M

R∗
21 R∗

22 · · · R∗
2M

...
...

. . .
...

R∗
M1 R∗

M2 · · · R∗
MM

 .

(32)
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By inspection, it is clear that this transformation of the recruitment
matrix does not alter the selection proportions, because each is multi-
plied by the same constant—for example, Ê1 RB in the first row. Conse-
quently, the transformation satisfies the first condition. The second con-
dition is satisfied because the inclusion of the equilibrium in each term
ensures that the row and column proportions will each equal that equi-
librium, and hence the corresponding row and column counts will be
equal. When transformed in this manner, the matrix has a simple struc-
ture. Not only are the row and column sums equal, but when expressed
as proportions they also equal the equilibrium, i.e., for any group X,
RB∗

X = RO∗
X, and RB∗

X/RB = RO∗
X/RO = ÊX.

If the assumptions of the RDS model are satisfied, such that
ties are reciprocal and recruitment is random, then differences in cross-
recruitment counts reflect only stochastic variation. Consequently, the
matrix can be smoothed by taking the mean of these counts, to yield a
smoothed recruitment matrix R

∗∗
as follows:

R∗∗ =



Ŝ11 Ê1 RB
(Ŝ12 Ê1 RB) + (Ŝ21 Ê2 RB)

2
· · · (Ŝ1MÊ1 RB) + (ŜM1 ÊMRB)

2
(Ŝ12 Ê1 RB) + (Ŝ21 Ê2 RB)

2
Ŝ22 Ê2 RB · · · (Ŝ2MÊ2 RB) + (ŜM2 ÊMRB)

2
...

...
. . .

...
(Ŝ1MÊ1 RB) + (ŜM1 ÊMRB)

2
(Ŝ2MÊ2 RB) + (ŜM2 ÊMRB)

2
· · · ŜMMÊMRB



=


R∗∗

11 R∗∗
12 · · · R∗∗

1M

R∗∗
21 R∗∗

22 · · · R∗∗
2M

...
...

. . .
...

R∗∗
M1 R∗∗

M2 · · · R∗∗
MM

 . (33)

The effect of this transformation is to render the recruitment matrix
“reciprocity compatible” (Heckathorn 2002:32) in the sense that the
additional equations that produce the problem of overdetermination in
three-category and larger systems is resolved because the excess equa-
tions become redundant.

After data smoothing is complete, the smoothed recruitment ma-
trix becomes the basis for all calculations, so all terms dependent on that
matrix must be recalculated, including the row sums, the column sums,
the selection proportions, and the equilibrium. For example, based on
the smoothed selection proportions and the estimated degrees (which
are not altered by data smoothing), the smoothed population estimate
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is calculated as follows in a system with M groups:

1 = P̂∗∗
1 + P̂∗∗

2 + P̂∗∗
3 + · · · + P̂∗∗

M

P̂∗∗
1 D̂1 Ŝ∗∗

12 = P̂∗∗
2 D̂2 Ŝ∗∗

21

P̂∗∗
1 D̂1 Ŝ∗∗

13 = P̂∗∗
3 D̂3 Ŝ∗∗

31

...
P̂∗∗

1 D̂1 Ŝ∗∗
1M = P̂∗∗

M D̂MŜ∗∗
M1.

(34)

This expression provides the means for calculating population estimates
for a system with M categories by solving a system of M equations with
M unknowns. A parallel with the n-category expression for the Markov
equilibrium is present, because if degrees are equal across groups, the
degree term drops out, thereby generalizing to the n-category case the
conclusion that equal degrees imply equality between the population
estimate and the equilibrium. In the balance of this paper, smoothing
will be employed when calculating estimators for all three-category and
larger variables; however, to simplify the notation, the double asterisk
indicating smoothing will not be shown. (For an example showing how
to calculate a smoothed population estimate, see Appendix B.)

3.3. Calculating Individualized Degree Components of the RDS
Sampling Weight

The next step in extending RDS to permit analysis of continuous vari-
ables is to devise means for calculating the degree component in an
individualized manner. It is inherent in chain-referral samples, includ-
ing RDS, that respondents of high degree are oversampled. This is the
basic insight upon which the multiplicity adjustment is based. Conse-
quently, to the extent that sampling is affected by differences in degree,
respondents must be weighted inversely by their degree. This suggests
that the formula for degree component must take the following form,
where DCi is the degree component for individual i, Di is the actor’s
self-reported network size, and K is a positive constant:

DCi = K
1
Di

. (35)
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It is also useful for the sampling weights to sum to the sample size, that
is,

n∑
i=1

Wi = n. (36)

These two constraints provide the basis for deriving an expression for
the individualized degree components. From equation (29), and em-
ploying the individualized version of the degree component (i.e., DCi

for respondent i), and the individual values for the recruitment compo-
nent (i.e., where individual i is a member of group X , RCi = RCX ), the
above expression expands to

n∑
i=1

(DCi · RCi ) = n. (37)

Expanding the DC term from equation (35) yields

n∑
i=1

(
K

1
Di

RCi
)

= n, (38)

which can be rearranged, providing the means to calculate K,

K = n
n∑

i=1

(
1
Di

RCi
) . (39)

The inclusion of this constant, it should be noted, does not af-
fect estimates such as prevalence estimates, but it nonetheless has utility.
When frequency distributions are calculated, the number of cases cor-
responds to the cases for which valid data are available. Substituting
equation (39) into equation (35) yields the expression for any respon-
dent i’s degree component

DCi = n
n∑

j=1

1
D j

RC j
· 1

Di
. (40)
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Using this expression, the degree component vector is calculated,
DC = (DC1, DC2, DC3, . . ., DCn), with values assigned consistent with
each respondent’s self-reported degree as well as the constant K. In the
jazz data set, degree components vary from a minimum of 0.125 for
the respondent with the largest network (850) to 5.302 for the respon-
dent with the smallest network (20)—a more than 40-fold variation in
values.

Based on the individualized degree component and the recruit-
ment component, the dual-component RDS sampling weight, DW i, can
be calculated for individual i as

DWi = DCi · RCi . (41)

Expanding the degree component from equation (35) yields

DWi = 1
Di

· K · RCi . (42)

By inspection, it is apparent that this dual-component sampling weight
combines a multiplicity adjustment (1/D) with an adjustment for dif-
ferential recruitment (RC).

The dual-component population estimate is calculated in the
standard manner for calculating means for weighted data; that is, for
any group X , with number of cases nX , and where Vi is the variable’s
value for respondent i from group X ,

D̂PX =

nX∑
i=1

DWi Vi

nX∑
i=1

DWi
. (43)

This does not represent a distinct RDS population estimator, for when
the categorical and individualized weights are employed to estimate the
same parameter, the estimates are equal. The difference lies not in the
constituent calculations but rather in the order in which the calculations
are carried out. (For a proof of equivalence, see Appendix C.)

An advantage of the individualized weights is that they per-
mit analysis of continuous variables. Figures 1(a) and 1(b) display
the analysis of two continuous variables, age and degree, comparing
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the unweighted estimate, the multiplicity estimate, and a set of dual-
component estimates. The cumulative distribution was calculated for
each variable. To more clearly display the differences among the es-
timates, the unweighted estimate was used as a baseline (i.e., each
weighted estimate was subtracted from the unweighted estimate). Con-
sequently, the area under the curve does not equal one; instead it indi-
cates the difference between the unweighted estimate and each type of
weighted estimate. Consider first the analysis of age in Figure 1(a). The
weighted estimates consistently exceed the unweighted estimate because
of a positive correlation between age and degree (r = 0.268), so weight-
ing inflated the estimated number of younger musicians. Multiplicity
weighting has substantial effects; for example, the estimated percentage
of respondents aged 40 or less is 9 percent greater in the multiplicity
estimate than in the unweighted estimate.

Figure 1(a) also displays alternative dual-component estimates
that differ based on how the continuous variable is partitioned. In con-
trast with the degree component, the recruitment component is defined
only at the group level, because it is calculated based on aggregate re-
cruitment patterns. Therefore, a step when calculating weights for a con-
tinuous variable is to choose an appropriate level of aggregation—that
is, whether to partition the sample at the median or by terciles, quartiles,
or a finer gradation. The rationale for identifying an appropriate level
of aggregation is that any aggregation level omits within-category infor-
mation regarding differential recruitment, so lower aggregation levels
capture less information than higher levels. However, a too-high aggre-
gation level subdivides the sample into so many cells that many have
small or zero values, thereby producing computational instability.

Some guidance can be drawn from other statistical procedures
for which rules have been devised regarding cell size; for example, for
chi-square that number is a minimum of five. Employing the chi-square
rule, an aggregation level of three is appropriate for both continuous
variables in Figure 1, because if divided by quartiles, the minimum cell
sizes would be less than 5 (i.e., 4 and 2, respectively, for degree and age),
but if divided by terciles, all cells have values in excess of 5 (i.e., 18 and 7,
respectively, for degree and age). As defined in this manner, the appropri-
ate aggregation level may vary across continuous variables, with lower
levels occurring when recruiter and recruit attributes on the variable
are correlated, because cases would cluster on the principal diagonal
with smaller numbers of cases elsewhere in the matrix, and higher levels
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occurring when recruiter and recruit attributes are independent, be-
cause cases would be uniformly distributed throughout the recruitment
matrix. From the standpoint of RDS analysis, this is a less than ideal
procedure, because estimates remain mathematically stable despite low
or zero values in cells of the recruitment matrix; what is more significant
is the mean cell size—that is, the number of recruits and recruiters, re-
spectively, in each subgroup. Therefore, a simpler approach—specifying
an optimal mean number of cases per cell—appears more appropriate.
Where AL is the aggregation level, n is the sample size, and nC is the
mean number of cases per cell, the equation for nC is

nC = n
AL2

. (44)

Solving this equation for aggregation level then yields

AL =
√

n
nC

. (45)

Figure 1(a) displays dual-component estimates for cumulative
age using a range of aggregation levels from 2 to 9. Levels 2, 3, and 4
deviate to a progressively greater degree from the multiplicity estimate.
This suggests that levels 2 and 3 are too crude to adequately capture
recruitment patterns. Intermediate levels of aggregation from 4 through
6 are highly convergent, with correlations among the estimates of 0.998.
This range of levels defines what may be termed a zone of convergence
and corresponds to mean cell sizes from 6.9 for the aggregation level of
6 (251/62) to 15.7 for the aggregation level of 4 (251/42). Higher aggre-
gation levels show signs of instability, as indicated by the nonmonotonic
nature of the differences among levels 7 though 9. For example, the es-
timates for the aggregation level of 7 are intermediate between those for
levels 8 and 9. The intermediate range of levels, those falling within the
zone of convergence, are optimal in that they best avoid both instabil-
ity from too high an aggregation level, and loss of information from a
too-low level. As thus defined, the optimal aggregation minimizes, but
cannot eliminate, loss of information.

Analyses of continuous variables from several RDS data sets
suggest that this data set is not unique. The zone of convergence tends to
occur for mean cell sizes in the range 12 ± 4, with higher levels producing
instability and lower levels falling between the convergence zone and the
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multiplicity estimate. However, additional research will be required to
determine the appropriateness of this guideline for a larger range of
data sets and continuous variables. What would be especially helpful
would be an analytically derived procedure for confirming the presence
of a zone of convergence and calculating its boundaries. This will be
the topic of a future paper. In the meantime, a test for convergence is
useful; analyses should employ a range of aggregation levels to confirm
the presence of a convergence zone. Further research would also be
useful to devise means for making computations involving higher levels
of aggregation numerically stable.

The results of the degree analysis differ from the age analysis in
three respects. First, the effect of weighting is greater: both weighted
estimates differ by more than 33 percent from the unweighted estimate.
This is to be expected, because both estimates include a multiplicity ad-
justment, in which respondents of greatest degree are given the smallest
weight. Second, dual-component estimates with varying aggregation
levels are highly convergent, to such an extent that they could not be
clearly distinguished, so only the aggregation level of five is displayed.
Third, both the multiplicity and the dual-component estimates are con-
vergent, with a maximum difference of 0.96 percent for respondents of
degree 125. These convergences, among dual-component estimates and
between them and the multiplicity estimate, suggest that in this case the
effects of differential recruitment on degree estimates are minor.

There are theoretic reasons to suppose that a feature of RDS sur-
vey design may weaken the effects of differential recruitment on degree
estimation. Recruitment quotas limit the number of peers a respondent
can recruit, generally to no more than three. Consequently, even re-
spondents with small networks can fulfill the quota, so the correlation
between degree and number of recruits tends to be small—for example,
0.051 in the original RDS study (Heckathorn 1997) and –0.044 in the
New York City jazz study. Therefore, an essential element of differen-
tial recruitment bias—differential recruitment effectiveness—is lacking.
Because respondents of differing degree have equal opportunities to re-
cruit, the lack of a substantial difference between the multiplicity and
the dual-component estimates for degree is expected. However, alter-
native and potentially useful research designs that are discussed in the
conclusion could make this bias quite large. Consequently, the ability
to control for this source of bias is useful because it expands the range
of viable research designs.
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4. CONTROLLING FOR DIFFERENTIAL RECRUITMENT
BIAS IN DEGREE ESTIMATION

The dual-component approach presented in the previous section did
not introduce a new population estimator. For the manner in which
the degree and recruitment components were defined guaranteed their
equivalence to the original formulation. That is, the sample weight,
W = P̂/C, was divided into two components,P̂/Ê and Ê/C, such
that, when multiplied, the intermediate term cancels out—that is,
P̂/Ê ∗ Ê/C = P̂/C. This equivalence was not altered by the algebraic
manipulations that lead to the individualized sampling weights, however
different the expression may appear. Consequently, the dual-component
estimator can be validly expected to have the same properties as the orig-
inal RDS estimator—that is, to be asymptotically unbiased when as-
sumptions 1 to 6 above are satisfied. In contrast, this section introduces
a new estimator intended to control for bias resulting from violation of
the sixth assumption, differential recruitment.

The new estimator is based on the ability to calculate degree es-
timates in a manner that controls for differential recruitment by degree.
Using the weights derived from the dual-component analysis of degree,
degree estimates can be derived for groups defined by other variables,
such as gender or airplay. Using the standard method for calculating
means using weighted variables—that is, where nX is the number of cases
in any group X , Di is degree of individual I from group X , and DWDi

is the dual-component weight for the individual’s degree—the adjusted
degree estimate for the group, ÂDX, is

ÂDX =

Nx∑
i=1

(Di · DWDi )

Nx∑
i=1

(DWDi )

. (46)

For example, the degree estimate for females increases from the multi-
plicity estimate of 102.566 to 103.849 (see Table 1a).

The expression for adjusted degree can be simplified to more
clearly reveal its relationship with the multiplicity approach to degree
estimation. From equation (42) and where RCDi is the recruitment com-
ponent for degree for the degree group into which individual i falls,
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equation (46) can be expanded as follows:

ÂDX =

nX∑
i=1

(
Di 1

Di
K · RCDi

)
nX∑
i=1

( 1
Di

K · RCDi
) . (47)

By algebraic manipulation, this expression can be simplified because
the D terms in the numerator cancel one another, and K is a constant
that appears in both the numerator and denominator, so the reduced
expression is

ÂDX =

nX∑
i=1

RCDi

nX∑
i=1

(
1

Di RCDi
) . (48)

This expression can be seen as a weighted version of the use of a multi-
plicity adjustment to estimate degree in equation (21), where the weight
is the recruitment component derived from the analysis of degree. It
is also apparent that when degree’s recruitment component is neutral
(i.e., RCD = 1), equations (21) and (48) are equivalent, because in the
latter equation the numerator, the sum of recruitment components,
becomes equivalent to the number of cases, and in the denominator,
the (1/D)∗RCD reduces to (1/D) ∗ 1 = 1/D. Similarly, if the value
of RCD is equal within a group (i.e., for all members a group, RCDi

has the same value), the effects of RCD cancel and so the multiplicity
and adjusted estimates are equivalent. This does not occur for groups
defined by gender, airplay, or age, because individuals of diverse de-
gree occur within each group. But it is necessarily the case for groups
categorized by degree—for example in the analysis in Table 2(b) all
respondents in the 20 to 90 degree group have the same RCD, 0.991,
and the same is true for the other four groups. As a result, for the de-
gree variable, the multiplicity and adjusted degree estimates are equiv-
alent (see Table 2b). In contrast, because RCD is nonneutral (i.e., RCD

= 1), the multiplicity and RDS population estimates differ—for ex-
ample, the multiplicity estimate of the proportion of the population
in the degree 20 to 90 group is 0.539, whereas the RDS estimate is
0.534.
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Based on this adjusted degree estimate, a new population esti-
mator can be derived by substituting the adjusted degree estimate for
the multiplicity-based estimate in the original RDS estimator, equation
(10); that is, for groups X and Y ,

ÂPX = ŜYX ÂDY

ŜYX ÂDY + ŜXY ÂDX

. (49)

When this term is expanded by substituting the expression for adjusted
degree in equation (48), where nx is the number of cases in group X , and
ny is the number of cases in group Y , the result is

ÂPX =

ŜYX


nY∑
j=1

RCD j

nY∑
j=1

( 1
D j

RCD j
)


ŜYX


nY∑
j=1

RCD j

nY∑
j=1

( 1
D j

RCD j
)
 + ŜXY


nX∑
i=1

RCDi

nX∑
i=1

( 1
Di

RCDi
)


. (50)

What is notable about this expression is that the recruitment compo-
nent for the degree variable enters into the degree estimation process
for analysis of all other variables. In this way, the estimator compen-
sates for differential recruitment by degree. The adjusted population
estimates are displayed in the bottom panels of Tables 1 and 2. The
estimate for the proportion of females changes from 0.2381 to 0.2380,
an adjustment that changes the estimate only at the fourth decimal
place. The effects of adjustment on the estimates for airplay are greater,
consistent with the greater dependence of this estimate on degree dif-
ferences between groups (see Table 1b). The estimated proportion with
airplay changes from 0.752 to 0.751. The substantial changes in de-
gree estimates and the comparatively small changes in population esti-
mates occur because the population estimates depend not on absolute
but on relative degrees; that is, an order-preserving linear transform
of groups’ estimated degrees has no effect on the population estimate,
so only relative degrees estimates are altered, and these alterations are
minor.
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Finally, the adjusted population estimate provides the basis for
adjusting the sampling weight; that is for any group X , the adjusted
sampling weight, AWx, is

AWX = ÂPX

CX
. (51)

Like the standard RDS sampling weight, this is a group-level weight.
The adjustment process can be extended to the dual-component weight,
which is individualized based on each respondent’s degree by multiply-
ing the latter by the ratio of the adjusted and the standard weight. That
is, for individual i from group X , the adjusted dual-component weight,
ADW i, is

ADWi = DWi AWX

WX
= DWi

(
ÂPX

CX

)
(

P̂X

CX

) . (52)

Equivalently, given that the C terms cancel, a simpler expression for the
adjusted dual-component weight for individual i from group X is

ADWi = DWi ÂPX

P̂X
. (53)

This expression permits the adjustment process to be extended to con-
tinuous variables. For example, when imported into a program such as
STATA, mean values and other statistics can be calculated for contin-
uous variables.

To assess the variation of the degree variable’s recruitment com-
ponent, it is useful to examine the magnitude of this term in multiple
RDS data sets. Magnitude is defined as the mean of the absolute differ-
ences from unity of the degree recruitment component— that is, for a
degree variable partitioned into M categories where RCDi is the recruit-
ment component for category i, the magnitude is,

∑M
i=1 |RCDi − 1/M;

for example, for the two categories 1.3 and 0.9, the magnitude is (|1.3
− 1| + |0.9 − 1|)/2 = (0.3 + 0.1)/2 = 0.2. Table 3 shows this term for
eight RDS data sets. The magnitude has a minimum value of 0.012 in
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a study of drug users in New York City (Abdul-Quader et al. 2006), a
value of 0.028 in the New York City jazz musician study, whose data
are employed in this article, and a maximum of 0.097 in a study of
Middletown, Connecticut, injection drug users (Heckathorn 1997).

To assess the sensitivity of RDS estimates to change in the magni-
tude of RCD, analyses were carried out to explore the effects of varying
that magnitude. Using the jazz musician data set, the magnitude of
RCD was multiplied by integers from zero to 10. This yielded 11 data
sets with magnitudes varying from zero (when the multiplier is zero) to
0.028 (when the multiplier is 1—the value in the original data set) to a
maximum of 0.28 (when the multiplier is 10). Figure 2 shows the effects
of these alterations in the magnitude of RCD for two variables, gender
and airplay, where the vertical axis is the difference between the origi-
nal RDS and the adjusted estimates. By inspection, it is apparent that
the relationship is approximately linear, with a steeper slope for airplay,
the variable whose weight principally depends on its degree component,
and a more gentle slope for gender, the variable whose weight is prin-
cipally determined by its recruitment component. When the multiplier
is zero (i.e., the left of Figure 1), there is no differential recruitment by
degree, so the standard RDS and adjusted estimates are equal. When
the multiplier is one and the magnitude of RCD is 0.028, the differences
between the estimates are those reflected in Tables 1(a) and 1(b)—that
is, 0.0001 for gender and 0.0009 for airplay. When the multiplier is 10,
the estimates increase ten-fold, to 0.001 for gender and 0.009 for airplay.
Consequently, increasing the magnitude of RCD by an order of mag-
nitude, to an amount nearly triple that found in any of the listed RDS
data sets, has rather modest effects.

However, changes in research design that induce an association
between degree and opportunities to recruit would produce much larger
potential effects. These effects were explored by transforming the New
York City jazz data set in a manner consistent with a design intended
to increase representation of an otherwise undersampled group, re-
spondents of small degree. Specifically, recruitment for the quintile of
smallest degree, those of degree 20 to 90, was tripled, thereby multi-
plying by three each entry in the top row of the recruitment matrix in
Table 2(b), with no other changes in data structure—for example, the
new hypothetical recruits were assumed to have the same degree as the
actual recruits. The result is a substantial increase in the magnitude of
the recruitment component for degree, from 0.028 to 0.246. Based on



186 HECKATHORN

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.000 0.028 0.056 0.084 0.112 0.140 0.168 0.196 0.224 0.252 0.280

Magnitude of the recruitment component of degree

D
if

fe
re

n
ce

 f
ro

m
 u

n
ad

ju
st

ed
 e

st
im

at
e 

(%
)

Gender Airplay

(c)

FIGURE 2. Effects of varying the magnitude of degree’s recruitment component
Note: Magnitude (RCD = 2.8%) is varied from zero to a multiplier of ten

the analysis of the effects of a uniform alteration in this magnitude in
Figure 2, the expected bias would be approximately 0.8 percent for a
variable such as airplay for which the degree component is most signifi-
cant, and 0.08 percent for a variable such as gender for which the degree
component is less significant. However, when standard RDS estimates
are generated, the discrepancies are quite different: the gender estimate

TABLE 3
Magnitude of the Recruitment Component of Degree (RCD) in Eight RDS Data

Sets

New York City drug users (Abdul-Quader et al. 2006) 0.012
New York City jazz musicians (Heckathorn and Jeffri 2003) 0.028
Chicago Latino gay, bisexual, and transsexual (Ramirez-Valles

et al. forthcoming)
0.039

Cornell University Undergraduates (Wejnert and Heckathorn
2005)

0.051

San Francisco Latino gay, bisexual, and transsexual
(Ramirez-Valles et al. forthcoming)

0.078

New London (CT) injection drug users (Heckathorn et al.
1999)

0.078

San Francisco jazz musicians (Heckathorn and Jeffri 2003) 0.094
Middletown (CT) injection drug users (Heckathorn 1997) 0.097
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changes by 4 percent, whereas the airplay estimates change by the ex-
pected 1 percent. This apparent anomaly results from the nonuniform
alteration in the recruitment component by degree. For the lowest quin-
tile, the recruitment component by degree changes from a near neutral
0.991 to 0.582, for a decrease of 0.409. In contrast, for the next quintile,
respondents of degree 100 to 125, it changes from 0.937 to 1.164, for an
increase of 0.227. The effects on the gender variable are greater, because
though both genders are similar in mean degree, the variance in degree
for males is greater so more males lie in the extremes of the degree distri-
bution, including the bottom quintile. Of course, the adjusted estimates
remain equivalent in the original and the altered data sets, because the
adjustment procedure filters out the confounding effects of differential
recruitment by degree. As this hypothetical example demonstrates, the
effect of differential recruitment by degree can be both substantial and
complex when recruitment effectiveness is associated with degree.

5. CONCLUSION

Sampling weights in RDS differ from standard weights because each
respondent’s weight varies as analyses shift from variable to variable.
Employing standard associational methods to derive a uniform set of
sampling weights that could be used for all variables or sets of variables
would simplify the analyses. However, such an approach would involve
a loss of precision. For given that the RDS estimator is asymptotically
unbiased for data sets that fit the method’s assumptions (Salganik and
Heckathorn 2004), and that those estimates yield different weights for
different variables, any method that produced uniform weights would
introduce a bias.

The potential for this variable-dependent bias derives from in-
teractions between the two factors that determine weights. These can
multiply one another, as when a group of larger degree has a bias toward
in-group ties and recruits more effectively; here differentials in degree
and differential recruitment both combine to increase oversampling of
the group. Alternatively, the two factors may counter one another, as
when a group of smaller degree is recruited more frequently by the
more effectively recruiting groups. In that case, differentials in degree
and differential recruitment can either cancel one another to produce
a self-weighting sample, or one or the other factor may prove stronger
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so weights must compensate for either undersampling or oversampling,
respectively. Weighting that is affected by differential recruitment nec-
essarily varies across variables, because differential recruitment is based
on network properties.

Socially irrelevant variables, such as having been born in an odd
or an even month, do not affect affiliation, and consequently fit a net-
work structure consistent with random mixing. In that case, differen-
tial recruitment would be minimal, deriving only from stochastic vari-
ation. In contrast, variables that reflect network segmentation, such
as race/ethnicity and other demographic factors, can produce patterns
of differential recruitment that vary in complex ways across variables.
Consequently, the ability of an estimator to control for differential re-
cruitment effects is broadly relevant.

In contrast, controlling for differential recruitment in degree es-
timation may have only minor effects when standard RDS research
protocols are followed because recruitment quotas induce a small cor-
relation between degree and recruitment effectiveness. Nevertheless, a
conservative research approach requires that this expectation be con-
firmed.

Moreover, the ability to control for differential recruitment in
degree estimation increases the range of research protocols from which
unbiased results can be expected. For example, changes in recruitment
quotas could enable the sampling process to adapt to less dense net-
works. Network density is seldom an issue when sampling drug users or
gay men because both populations tend to be gregarious. In contrast,
the network structure of commercial sex workers is more diverse. RDS
has been successfully used with sex workers in two cities in Vietnam
(Johnston et al. 2006). However, it performed poorly in two cities in
Estonia and Russia (Simic et al. 2006), for reasons that may include
limitations in the ability of prostitutes to independently form networks.
When sampling is without replacement (i.e., respondents can be inter-
viewed only once), networks are sparse, and when a respondent has
made the maximum number of allowable recruitments, others to whom
the respondent is connected may become stranded, with no network con-
nections linking them directly or indirectly to any potential recruiters.
In essence, the recruitment process breaks what had initially been a large
low-density component into multiple isolated components. This can be
avoided by a change in research design, in which recruitment would take
place in two stages. The first would employ a uniform modest quota, as
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is standard practice, until the sample had attained adequate sociometric
depth (i.e., number of waves) to ensure that the population’s network
had been adequately penetrated. In the second stage, those respondents
who had fulfilled their quotas would then be given an equal number
of additional recruitment rights, and this process would be repeated a
specified number of times until the target sample size was reached. In
this way, respondents located in isolated components created during the
first stage could potentially be reached during the second stage, thereby
increasing the sampling method’s performance in low-density networks.
An effect of this alteration in research design would be to increase the
association between degree and recruitment effectiveness, thereby po-
tentially introducing a large bias from differential recruitment by degree.
In that case, having the means to poststratify the sample to compensate
for that bias may prove important.

A second context in which means for controlling for differential
recruitment by degree may become important occurs when the sample is
stratified to increase recruitment of groups of special interest. Generally,
this involves a larger recruitment quota for members of these groups. The
effect is to increase the recruitment effectiveness of the targeted groups.
Consequently, if the groups’ degree differs from the norm, differential
recruitment by degree will occur.

The relevance of the weighting procedures introduced in this pa-
per differs according to the form of analysis. When point estimates are
at issue, weighting is always potentially important, as illustrated by an
RDS study of HIV prevalence in San Francisco and Chicago (Ramirez-
Valles et al. 2005a). In San Francisco, recruitment by HIV status was
nearly identical for both HIV positives and negatives. Similarly, degree
was unrelated to HIV status, so the sample was self-weighting. That
is, the sample composition (46.1 percent) approximated the RDS esti-
mate (48.7 percent). In contrast, the differences in recruitment patterns
in Chicago were substantial, as were differences in recruitment effec-
tiveness, so both elements required for differential recruitment effects
were present. Moreover, HIV positives had networks nearly twice as
large as negatives, so weights had a very substantial effect. Prevalence
in the sample was 24.7 percent, but the RDS estimate was 16.8 percent.
Point estimates for continuous variables also require weights. For exam-
ple, the mean age for New York City female jazz musicians varies from
47.9 without weights to 44.7 for the multiplicity weight and 43.5 for the
dual-component weight.
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Weights function differently in multivariate analysis. It is now
recognized that weighting frequently has little effect on regression anal-
yses (Winship and Radbill 1994), because these depend on correlations
among variables that tend to change only slightly when weights inflate
or deflate the value of a variable. Consequently, Winship and Radbill
recommend conducting the analysis with weights, and then repeating
the analysis with no weights. If the results of the two analyses are conver-
gent, they recommend reporting the unweighted result. The advantage
of this procedure is that weighting produces wider confidence intervals,
so they should be employed only when necessary. Of course, that deter-
mination requires the ability to replicate analyses both with and without
weights, for which the sort of weighting procedure introduced in this pa-
per is needed. (For an example of this procedure that uses RDS data,
see Ramirez-Valles et al. forthcoming.)

Further development of RDS in several directions would be use-
ful. First, the effects of differential recruitment on variance estimation
should be explored (for a detailed treatment of bootstrap confidence
intervals in RDS analysis, see Salganik [2006]). When some groups re-
cruit more effectively than others, and groups vary in the variance in
their recruitment behaviors, an approach to variance estimation that
assumes uniform recruitment effectiveness would fail to include that
source of variance. Second, whether efforts to derive variance estimates
analytically (Volz and Heckathorn forthcoming) will prove compatible
with the dual-component approach is a more difficult question that re-
quires additional research. It also remains to be seen whether statistical
packages, such as SUDAAN, that are designed to accommodate highly
complex weighting systems can be adapted to the dual-component
approach. In any case, the introduction of a new estimation proce-
dure requires corresponding adjustments in procedures for variance
estimation.

APPENDIX A: CALCULATION PROCEDURES FOR RDS
SAMPLING WEIGHTS

Table A1 presents a confabulated data set with 20 cases. It consists of
the respondent identification (RID) for each respondent and the RID
of each respondent’s recruiter, along with each respondent’s degree (i.e.,
self-reported network size) and value for a dichotomous variable. Note
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TABLE A1
Sample Data

RID RID of Recruiter Degree Variable

1 NA 8 A
2 1 8 A
3 1 NA A
4 1 10 B
5 2 5 A
6 2 7 B
7 3 4 B
8 3 7 B
9 3 5 A

10 4 2 B
11 5 4 A
12 5 NA B
13 5 3 A
14 7 2 B
15 7 3 B
16 7 3 A
17 8 7 B
18 9 3 B
19 9 5 A
20 9 8 B

that respondent 1 lacks a recruiter; this is the seed. Note also that the
degree data for respondents 3 and 12 are missing.

From these data, the recruitment matrix is constructed
(Table A2) by matching recruiters and recruits. For example, respon-
dent 1, a member of group A, recruited respondents 2 and 3, both
members of group A, and respondent 4, a member of group B, thereby
adding two recruitments from A to A, and one from A to B. The tran-
sition probabilities are then calculated based on each group’s pattern of
recruitment.

Note that the sum of cases in the recruitment table is the number
of respondents minus the number of seeds; that is, 20 – 1 = 19. This
table also displays the recruitment proportions—that is, the proportions
derived from the recruitment table, and also the sample proportion,
which includes the seeds.
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TABLE A2
Recruitment Matrix

Group of Recruit
Recruitment Count

(Selection Proportion)
Group of Person
Who Recruited Group A Group B Total

Group A 7 7 14
(0.5) (0.5) (1)

Group B 1 4 5
(0.2) (0.8) (1)

Total recruitments of each group (RO) 8 11 19
Recruitment proportion, R 0.421 0.579 1
Sample composition, C 0.45 0.55 1

A.1. The Degree Estimate

Degree estimation in traditional RDS analysis is based on a multiplicity
adjustment. That is, because respondents are sampled in proportion to
their degree, their degrees must be weighted by the inverse. The estimated
degree for group A is as follows:

D̂A = n A
n A∑

i=1

1
Di

= 7
1
8 + 1

5 + 1
5 + 1

4 + 1
3 + 1

3 + 1
5

= 4.264. (A1)

Note that this calculation excludes respondent 1, the seed, be-
cause it was not selected through peer recruitment (see Salganik and
Heckathorn 2004:215). It also excludes another member of group A,
respondent 3, for which degree data are missing. Consequently, though
nine respondents fall within group A, the numerator is 7. Using the
same procedure, the estimated degree for group B is 3.891.

A.2. The Population Estimate

Based on the selection proportions and the degree estimates, the popu-
lation estimate can be calculated as follows, where D̂x is the estimated
degree of group X , and Ŝxy is the transition probability from group X
to Y :
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TABLE A3
Sampling Weights

RID Weight

1 0.594
2 0.594
3 0.594
4 1.332
5 0.594
6 1.332
7 1.332
8 1.332
9 0.594

10 1.332
11 0.594
12 1.332
13 0.594
14 1.332
15 1.332
16 0.594
17 1.332
18 1.332
19 0.594
20 1.332

P̂A = ŜBAD̂B

ŜBAD̂B + ŜAB D̂A
= 0.2 · 3.891

0.2 · 3.891 + 0.5 · 4.264
= 0.267. (A2)

The population estimate for group B is therefore P̂B = 1 − 0.267 =
0.733.

A.3. Sampling Weights

The sampling weight is defined as the ratio of the population estimate, P,
and the sample proportional composition, C. Therefore, the sampling
weights for each group are calculated as follows:

WA = P̂A
CA

= 0.267
0.45 = 0.594

WB = P̂B
CB

= 0.733
0.55 = 1.332.

(A3)
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TABLE A4
Unweighted and Weighted Analyses

Unweighted

Frequency Percentage Valid Percentage Cumulative Percentage

Valid A 9 45 45 45
B 11 55 55 100

Total 20 100 100

Weighted

Frequency Percentage Valid Percentage Cumulative Percentage

Valid A 5.3 26.7 26.7 26.7
B 14.7 73.3 73.3 100

Total 20 100 100

A vector of these weights can be imported into statistical analysis
programs such as STATA or SPSS. The weights for the current data set
appear in Table A3.

For example, the following is the output from SPSS comparing
an unweighted and a weighted analysis. The former reflects merely the
sample composition; the latter coincides with the above-derived RDS
population estimates. Note also that whereas in the recruitment matrix
the sum of cases is 19, in Table A4 the sample size is 20. This is based
on a decision to assign to the seed the sampling weight appropriate to
its category, group A.

A more conservative approach, though one that would entail
loss of data, would be to calculate the weight using the recruitment
proportion rather than the sample proportion (i.e., group A’s weight
would then be 0.267/0.421 = 0.634), and to assign a weight of zero to
the seeds; in that case the sample size would be equivalent to that in the
recruitment table. The decision to use the former approach is based on
the judgment that data loss should be accepted only when inclusion of
problematic data would introduce more than trivial amounts of bias,
a possibility that appears highly unlikely in this context, where seeds
generally compose only a modest proportion of a typical RDS sample.
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TABLE A5
Calculation of the Constant K

RID RC D RC∗ 1/D

1 0.635 4.264 0.149
2 0.635 8 0.079
3 0.635 4.264 0.149
4 1.299 10 0.130
5 0.635 5 0.127
6 1.299 7 0.186
7 1.299 4 0.325
8 1.299 7 0.186
9 0.635 5 0.127

10 1.299 2 0.649
11 0.635 4 0.159
12 1.299 3.891 0.334
13 0.635 3 0.212
14 1.299 2 0.649
15 1.299 3 0.433
16 0.635 3 0.212
17 1.299 7 0.186
18 1.299 3 0.433
19 0.635 5 0.127
20 1.299 8 0.162
Sum 5.012
N 20
K ( = N/Sum) 3.991

A.4. Dual-Component Sampling Weights

Dual-component weights are calculated based on four terms: (1) the
population estimate, (2) the sample composition, (3) the equilibrium
for each group, and (4) each respondent’s degree.

A.4.1. Recruitment Component
The recruitment component of the dual weight is calculated from the
sample composition, C, and the Markov equilibrium, E. The equilib-
rium calculated from the transition probabilities for group A is

ÊA = ŜBA

ŜBA + ŜAB
= 0.2

0.2 + 0.5
= 0.286. (A4)
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TABLE A6
Calculation of the Dual-Component Weight

RID RC D K DC ( = 1/D∗K) DW ( = RC∗DC)

1 0.635 4.264 3.991 0.936 0.594
2 0.635 8 3.991 0.499 0.317
3 0.635 4.264 3.991 0.936 0.594
4 1.299 10 3.991 0.399 0.518
5 0.635 5 3.991 0.798 0.507
6 1.299 7 3.991 0.570 0.740
7 1.299 4 3.991 0.998 1.296
8 1.299 7 3.991 0.570 0.740
9 0.635 5 3.991 0.798 0.507

10 1.299 2 3.991 1.995 2.591
11 0.635 4 3.991 0.998 0.633
12 1.299 3.891 3.991 1.026 1.332
13 0.635 3 3.991 1.330 0.845
14 1.299 2 3.991 1.995 2.591
15 1.299 3 3.991 1.330 1.727
16 0.635 3 3.991 1.330 0.845
17 1.299 7 3.991 0.570 0.740
18 1.299 3 3.991 1.330 1.727
19 0.635 5 3.991 0.798 0.507
20 1.299 8 3.991 0.499 0.648

Similarly, the equilibrium for group B is 1 − 0.286 = .714. The recruit-
ment components for groups A and B are therefore

RCA = ÊA
CA

= 0.286
0.45 = 0.635

RCB = ÊB
CB

= 0.714
0.55 = 1.299.

(A5)

A.4.2. Degree Component
The group-based degree component is the ratio of the group’s popula-
tion estimate and equilibrium; that is,

DCA = P̂A

ÊA
= 0.267

0.286 = 0.936

DCB = P̂B

ÊB
= 0.733

0.714 = 1.026.
(A6)

However, what is useful for tasks such as analyzing continu-
ous variables is the individualized version of the degree component
(equation 40 in the text). The degree component for a respondent is the
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TABLE A7
Recruitment Matrix by Degree

Degree of Recruit
Recruitment Count (Selection Proportion)

Degree of Person
Who Recruited Degree 2–5 Degree 6–10 Total

Degree 2–5 7 1 8
(0.875) (0.125) (1)

Degree 6–10 2 4 6
(0.3333) (0.6667) (1)

Total recruitment of each group, RO 9 5 14
Sample composition 0.6111 0.3889 1
Equilibrium sample distribution 0.7273 0.2727 1

product of two terms, the reciprocal of the respondent’s degree (i.e., a
multiplicity adjustment) and a constant K, which is calculated from the
recruitment components and degrees.

This constant is calculated from three terms: the recruitment
component, each respondent’s degree, and the number of cases for which
degree information is available. That is, where n is the number of valid
cases for the variable being analyzed, where for any individual i, RCi is
the recruitment component assigned to the individual’s group (i.e., for
individual i from any group X , RCi = RCX ), and Di is the individual’s
degree, the constant K is

K = n
n∑

i=1

1
Di RCi

. (A7)

This constant is an estimate for the overall mean degree for respondents
in the system. The calculation of K for the sample data is shown in
Table A5.

Note that the calculation includes data imputation, in which
respondents with missing degree data (i.e., respondents 3 and 12)
are assigned the estimated degree for their group. This is a proce-
dure that was implicit in earlier RDS analyses (e.g., Heckathorn 2002;
Salganik and Heckathorn 2004), where degree estimates were made em-
ploying the available degree data and then assigned to each element
in the recruitment table, irrespective of whether a recruit had miss-
ing degree data. Note also that data imputation extends to the seed
(respondent 1).
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TABLE A8
Calculation of the Recruitment Component of Degree (RCD)

RCD (= Ê
/

C

RID Group Seed? Ê C if respondent not a seed)

1 Degree 6–10 Yes 0.2727 0.3889 0
2 Degree 6–10 No 0.2727 0.3889 0.7013
3 0 No 0 0 0
4 Degree 6–10 No 0.2727 0.3889 0.7013
5 Degree 2–5 No 0.7273 0.6111 1.1901
6 Degree 6–10 No 0.2727 0.3889 0.7013
7 Degree 2–5 No 0.7273 0.6111 1.1901
8 Degree 6–10 No 0.2727 0.3889 0.7013
9 Degree 2–5 No 0.7273 0.6111 1.1901

10 Degree 2–5 No 0.7273 0.6111 1.1901
11 Degree 2–5 No 0.7273 0.6111 1.1901
12 0 No 0 0 0
13 Degree 2–5 No 0.7273 0.6111 1.1901
14 Degree 2–5 No 0.7273 0.6111 1.1901
15 Degree 2–5 No 0.7273 0.6111 1.1901
16 Degree 2–5 No 0.7273 0.6111 1.1901
17 Degree 6–10 No 0.2727 0.3889 0.7013
18 Degree 2–5 No 0.7273 0.6111 1.1901
19 Degree 2–5 No 0.7273 0.6111 1.1901
20 Degree 6–10 No 0.2727 0.3889 0.7013

A more conservative approach, which would entail loss of data,
would have been to delete from the list any respondents for whom de-
gree data are missing. However, the approach taken in this paper is to
employ as much information as is validly available for calculating each
of the two terms from which the population estimate is based and then
to extend those estimators to the remainder of the data set. Thus, all
available recruitment data are employed in the calculation of transition
probabilities, and all available degree data from peer-recruited respon-
dents are employed to estimate degree.

The dual-component weight can now be calculated based on the
recruitment and degree components. Respondent i’s dual-component
weight, DW i, is

DWi = RCi · DCi = RCi · 1
Di

· K. (A8)
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TABLE A9
Calculating Adjusted Degree, Group A

RID RCD Degree RCD/Degree

2 0.7013 8 0.0877
5 1.1901 5 0.2380
9 1.1901 5 0.2380

11 1.1901 4 0.2975
13 1.1901 3 0.3967
16 1.1901 3 0.3967
19 1.1901 5 0.2380
Sum 7.8418 1.8926
Adjusted degree = 4.1434 ( = 7.8418/1.8926)

The calculations of the degree component and the dual-
component sampling weight are illustrated in Table A6.

When the vector of individualized weights is imported into
a statistical program, it yields population estimates equal to those

TABLE A10
Calculating the Adjusted Dual-Component Weight

RID Variable DW AP P ADW (= DW(AP
/

P))

1 A 0.594 0.250 0.267 0.556
2 A 0.317 0.250 0.267 0.297
3 A 0.594 0.250 0.267 0.556
4 B 0.518 0.750 0.733 0.530
5 A 0.507 0.250 0.267 0.475
6 B 0.740 0.750 0.733 0.757
7 B 1.296 0.750 0.733 1.326
8 B 0.740 0.750 0.733 0.757
9 A 0.507 0.250 0.267 0.475

10 B 2.591 0.750 0.733 2.651
11 A 0.633 0.250 0.267 0.593
12 B 1.332 0.750 0.733 1.363
13 A 0.845 0.250 0.267 0.791
14 B 2.591 0.750 0.733 2.651
15 B 1.727 0.750 0.733 1.767
16 A 0.845 0.250 0.267 0.791
17 B 0.740 0.750 0.733 0.757
18 B 1.727 0.750 0.733 1.767
19 A 0.507 0.250 0.267 0.475
20 B 0.648 0.750 0.733 0.663
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produced by the standard weights. A difference, however, is notable.
When the mean degree by group is estimated, the categorical weight
yields a result that ignores within-group variation in degree (i.e., D̂A =
4.714, D̂B = 5.3), whereas when the individualized weight is used, the
result coincides with the multiplicity-based degree estimate (i.e., 4.264
and 3.891 for groups A and B, respectively).

A.4.3. Calculating the Recruitment Component for Degree
The degree variable is partitioned into an appropriate aggregation level.
For example, to simplify the analysis, it is divided into two categories,
degree 2–5, and degree 6–10, as shown in Table A7.

The recruitment component is then calculated using text equa-
tion (19). The result is a vector of recruitment components (Table A8).

Note that consistent with the practice of excluding seeds from
degree calculations, a respondent is assigned a value of zero for the
degree recruitment component not only if degree data are missing, but
also if the respondent is a seed. Note also that RCD is nonneutral; that
is, its value differs from one. Consequently, differential recruitment by
degree is present in this data set.

Using group A as an example, the adjusted degree estimate is
calculated as shown in Table A9.

A.4.4. Calculating the Adjusted Population Estimate
The adjusted population estimate, ÂP, is then calculated by substituting
the adjusted degrees into the RDS estimator equation, as follows:

ÂPA = ŜBA ÂDB

ŜBA ÂDB + ŜAB ÂDA

= 0.2 · 3.4523
0.2 · 3.4523 + 0.5 · 4.1434

= 0.25.

(A9)

Based on the adjusted degree estimates, the estimated proportion
of those in group A changes from 0.267 to 0.25. In this way, bias resulting
from differential recruitment by degree can be controlled.

A.4.5. Calculating the Adjusted Dual-Component Weights
The adjusted dual-component weights are calculated by multiplying the
dual-component weights by the ratio of the adjusted and original RDS
population estimator. This is illustrated in Table A10.
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When these weights are imported into a statistics program such
as STATA and the estimated frequency of the variable is analyzed using
these weights, the result is the adjusted population estimate, 0.25 and
0.75 for groups A and B, respectively.

APPENDIX B: EXTENDING THE ANALYSIS BEYOND
DICHOTOMOUS VARIABLES: DATA SMOOTHING

This section illustrates the means for deriving population estimates for
variables with three or more categories using a data-smoothing proce-
dure. Table B1 presents a recruitment matrix by age.

Table B2 presents the selection proportions.
Table B3 presents the equilibrium vector.
In the demographically adjusted recruitment matrix (Table B4)

each cell is the product of three terms: the selection proportion and the
equilibrium and total recruitments in the system.

For example, cell (2, 3), the number of recruitments by those age
34–42 of those age 43–49, is 0.21429 ∗ 0.21909 ∗ 250 = 11.73696.

Averaging the cross-recruitment counts then produces the
smoothed recruitment matrix (Table B5).

TABLE B1
Original Recruitment Matrix by Age

Age 20–33 Age 34–42 Age 43–49 Age 50–58 Age 59–101 RB

Age 20–33 13 10 3 2 2 30
Age 34–42 15 17 12 9 3 56
Age 43–49 7 9 8 14 12 50
Age 50–58 7 9 17 13 14 60
Age 59–101 8 4 10 15 17 54
RO 50 49 50 53 48 250

TABLE B2
Original Selection Proportions

Age 20–33 Age 34–42 Age 43–49 Age 50–58 Age 59–101

Age 20–33 0.433 0.333 0.1 0.067 0.067
Age 34–42 0.268 0.304 0.214 0.161 0.054
Age 43–49 0.14 0.18 0.16 0.28 0.24
Age 50–58 0.117 0.15 0.283 0.217 0.233
Age 59–101 0.148 0.074 0.185 0.278 0.315
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For example, the counts in cell (2, 3) and cell (3, 2) are now equal
to the mean of each, i.e., (11.737 + 8.361)/2 = 10.049.

This smoothed matrix is then employed to recalculate all terms
that are dependent upon recruitment counts. For example, the smoothed
selection proportion matrix is shown in Table B6.

All other recruitment-count-dependent terms are then derived in
the standard manner.

Drawing the dual-component degree estimates from Table 2(a)
and the smoothed selection proportions from Table B6, the smoothed
population estimate is derived by solving the following system of equa-
tions:

TABLE B3
Original Equilibrium Vector

Age 20–33 Age 34–42 Age 43–49 Age 50–58 Age 59–101

0.233 0.219 0.186 0.192 0.17

TABLE B4
Demographically Adjusted Recruitment Matrix

Age 20–33 Age 34–42 Age 43–49 Age 50–58 Age 59–101 RB

Age 20–33 25.284 19.449 5.835 3.89 3.89 58.348
Age 34–42 14.671 16.627 11.737 8.803 2.934 54.772
Age 43–49 6.503 8.361 7.432 13.006 11.148 46.45
Age 50–58 5.587 7.184 13.569 10.376 11.175 47.891
Age 59–101 6.302 3.151 7.878 11.816 13.392 42.539
RO 58.347 54.772 46.451 47.891 42.539 250

TABLE B5
Data-Smoothed Recruitment Matrix

Age 20–33 Age 34–42 Age 43–49 Age 50–58 Age 59–101 RB

Age 20–33 25.284 17.06 6.169 4.739 5.096 58.348
Age 34–42 17.06 16.627 10.049 7.993 3.043 54.772
Age 43–49 6.169 10.049 7.432 13.288 9.513 46.451
Age 50–58 4.739 7.993 13.288 10.376 11.495 47.891
Age 59–101 5.096 3.043 9.513 11.495 13.392 42.539
RO 58.348 54.772 46.451 47.891 42.539 250
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TABLE B6
Data-Smoothed Transition Probabilities

Age 20–33 Age 34–42 Age 43–49 Age 50–58 Age 59–101

Age 20–33 0.433 0.292 0.106 0.081 0.087
Age 34–42 0.311 0.304 0.183 0.146 0.056
Age 43–49 0.133 0.216 0.16 0.286 0.205
Age 50–58 0.099 0.167 0.277 0.217 0.24
Age 59–101 0.12 0.072 0.224 0.27 0.315

TABLE B7
Adjusted Population Estimate

Age 20–33 Age 34–42 Age 43–49 Age 50–58 Age 59–101

0.301 0.213 0.18 0.208 0.098

1 = P̂1 + P̂2 + P̂3 + P̂4 + P̂5

P̂1 · 82.81 · 0.292 = P̂2 · 109.777 · 0.311

P̂1 · 82.81 · 0.106 = P̂3 · 110.549 · 0.133

P̂1 · 82.81 · 0.081 = P̂4 · 98.569 · 0.099

P̂1 · 82.81 · 0.087 = P̂5 · 186.183 · 0.12.

(B1)

Solving this system of linear equations yields the adjusted population
estimate reported in Table B7.

APPENDIX C: PROOF OF EQUIVALENCE OF THE RDS
POPULATION ESTIMATORS DERIVED FROM

CATEGORICAL AND INDIVIDUALIZED WEIGHTS

The difference between the categorical and individualized estimation
procedures lies not in the computations upon which each estimate is
based. Rather, these differences occur according to the order in which
these calculations are performed. An element of any multiplicity esti-
mate is summing across degree reciprocals. In the categorical weights,
this procedure is embedded within the calculation of the estimated mean
for each group (i.e., see text equation 21). In contrast, in estimates based



204 HECKATHORN

on the individualized weights, this procedure occurs when the individ-
ualized weights are summed; because each respondent’s individualized
weight contains his or her own degree reciprocal (i.e., see text equation
42). The equivalence of the two means of estimation can be demon-
strated by unpacking each into its constituent terms and then simplify-
ing the resulting expression.

To minimize the complexity of the proof, the simplest system
from which each indicator can be calculated is used. Assume a dichoto-
mous variable is to be analyzed with disjoint groups X and Y , with
cross-recruitment proportions SXY and SYX ; and the number of respon-
dents in groups X and Y are nX and nY , respectively. Assume further
that only two respondents in each group have valid degree data, for this
is the minimum amount of data for which a multiplicity adjustment is
possible. The degrees are DX 1 and DX 2 for X , and DY 1 and DY 2 for Y .

C.1. Estimate Based on Categorical Weights

The weighted estimate of a population proportion for a dichotomous
variable is given by the expression

P̂X =

nX∑
i=1

Wi

nX∑
i=1

Wi+
nY∑
j=1

Wj
. (C1)

Given categorical weights, the values are the same for each member of
group X , WX , and for each member of Y , WY . Consequently, the above
expression reduces to

P̂X = nX WX

nX WX + nY WY
. (C2)

In expanded form, the weight for a member of group X is

WX =
(

DY1 DY2 DX2nYSYX + DY1 DY2 DX1nYSYX

DY1 DY2 DX2nYSYX + DY1 DY2 DX1nYSYX + DX1 DX2 DY2nX SXY + DX1 DX2 DY1nX SXY

)

×
(

nX + nY

nX

)
.

(C3)
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The weight for members of group Y is defined in the same manner.
When the weights for both groups are substituted into equation (C2)
above and simplified, the result is

P̂X = DY1 DY2 DX2nYSYX + DY1 DY2 DX1nYSYX

DY1 DY2 DX2nYSYX + DY1 DY2 DX1nYSYX + DX1 DX2 DY2nX SXY + DX1 DX2 DY1nX SXY
.

(C4)

C.2. Estimate Based on Individualized Weights

The estimate of a population proportion using individualized weights
is given by the expression below, where each individualized weight is ex-
panded into its constituents. That is, substituting text equation (42) into
equation (C1), and given that all Xs have the recruitment component
RCX and Ys, the recruitment component RCY yields the following:

P̂X =

nX∑
i=1

(
K 1

Di RCX
)

nX∑
i=1

(
K 1

Di RCX
) +

nY∑
j=1

(
K 1

D j RCY
) . (C5)

This estimate is a function of three types of terms: (1) the recruitment
component for each group, (2) the system constant, and (3) respondents’
degrees. Given that only two respondents in each group have valid degree
data, this expression can be expanded as follows:

P̂X =
(
K 1

DX1 RCX
) + (

K 1
DX2 RCX

)(
K 1

DX1 RCX
) + (

K 1
DX2 RCX

) + (
K 1

DY1 RCY
) + (

K 1
DY2 RCY

) .

(C6)

The recruitment component can also be expanded and simplified—for
example, for X , RCX expands to

RCX = SYX (nX + nY)
(SXY + SYX) nX

. (C7)

The K term can be expanded similarly:

K = (SXY + SYX) nX DX1 DX2(
DX1 + DX2

)
SYX

. (C8)
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Substituting the above expressions for K and RCX and RCY into C6,
and then simplifying, produces the maximally expanded expression

P̂X = DY1 DY2 DX2nYSYX + DY1 DY2 DX1nYSYX

DY1 DY2 DX2nYSYX + DY1 DY2 DX1nYSYX + DX1 DX2 DY2nX SXY + DX1 DX2 DY1nX SXY
.

(C9)

Note that this expression is identical to equation (C4) above. Conse-
quently, the categorical and the individualized weights yield the same
population estimate. Numerical analysis confirms that the conclusion
derived from this simple case extends to the general case of systems with
greater amounts of degree data and larger numbers of categories.
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