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Deriving Valid Population Estimates
from Chain-Referral Samples
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Researchers studying hidden populations—including injection drig users, men who have sex with men,
and the homeless—find that standard probability sampling methods are cither inapplicable or prohibiiively
costly because their subjects lack a sampling frame, have privacy concerns, and constitute a small part of the gen-
eral population. Therefore, researchers generally employ non-probability methods, including location sampling
methods such as targeted sampling, and chain-referral methods such as snowball and respondent-driven sam-
pling. Though nonprobability methods succeed in accessing the hidden populations, they have been insufficient
for statistical inference. This paper extends the respondent-driven sampling method to show that when bigses
associated with chain-referral methods are analyzed in sufficient defail, a statistical theory of the sampling pro-
cess can be constructed, based on which the sampling process can be redesigned to permit the derivation of indi-
cators that are not biased and have known levels of precision. The results are based on a stiedy of 190 injection
drug users in a small Connecticut city.

Non-probability sampling methods were once considered appropriate only for pilot studies.
This has changed because of the AIDS epidemic (Laumann, et al. 1989) and decreases in the
accuracy of the U.S. census (Brown, et al. 1999). Efforts to address both problems have focused
attention on sampling hidden populations, such as injection drug users, men who have sex with
mern, and the homeless. These populations lack a sampling frame, and sampling is further
complicated by privacy concerns based on the stigma associated with membership in the pop-
ulation. Traditional methods for sampling these groups are often inapplicable (MacKellar, et
al. 1996). For example, one cannot sample injection drug users through household surveys
because injectors sometimes hide their habit from those with whom they live, including par-
ents, roommates, and sexual partners. Similarly, the homeless cannot be reached through
household surveys or random digit dialing, nor can these methods reach persons with unsta-
ble living arrangements, as occurs when several families live in an aparument, but only one
name appears on the lease (Sudman and Kalton 1986). Studies of drug treatrnent programs,
prisons, and homeless shelters provide access to some hidden populations, but when the insti-
tutions do the sampling, drawing a representative sample is not a priority.

Two methods currently dominate studies of hidden populations. Location sampling, the
best-known form of which is targeted sampling (Watters and Biernacki 1989), is suitable when
the target population is geographically concentrated. It generally involves two basic steps.
Researchers ethnographically map the target population and then conduct interviews at the
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sites identified by the ethmographic mapping. Location sampling varies based on the charac-
teristics of the locations being sampled. If the locations where the population can be found are
well defined and public, as in studies of nonhidden populations such as patrons of a shopping
mall, respondents can be drawn randemly. However, rhis is generally not possible when sam-
pling a hidden population, because sampling is limited in several ways (Watters and Biernacki
1989). First, by time of day. For example, in studies of injection drug users {IDUs}, safety con-
cerns generally limit interviews to daylight hours even though this is not when many drug
scenes are most active. Second, by researchers’ recruitment strategies. For example, researchers
have explored techniques for increasing response rates for brief screening interviews {MacKel-
lar, et al. 1996}. And third—but most significanily—by location. Private settings, such as indi-
viduals” homes, and small, geographically dispersed settings are often excluded because accessing
them would be prohibitively costly or impossible. Therefore, members of the population who
do not frequent large public settings tend to be excluded.

The second method for sampling hidden populations, chain-referral sampling (Erickson
1979}, is suitable when members of the target population know one another and are densely
interconnected. It is not suitable when the population members do not know one another as
members of the population. The method is further limited by the form of referral, When, as in
the study reported here, interviews take place at a single location, the sample is limited 1o
those in relatively close proximity to that site. However, were telephone interviews used, sam-
ples of less geographically concentrated populations could be drawn.

Sampling begins with a set of initial subjects who serve as seeds for an expanding chain of
referrals, with subjects from each wave referring subjects of the subsequent wave., The best-known
form is snowball sampling (Goodman 1961): The sceds, drawn randomly from the population,
provide researchers with the names and contact information of other potential subjects; the
researchers then select a fixed number of names from each list; and this process continues
until the desired number of waves is reached. Of course, drawing a random initial sampling is
not feasible when sampling a hidden population (Spreen 1992), so Frank and Snijders (1994)
recommend beginning with ethnographic mapping to select a maximally diverse set of initial
subjects, and then conducting only a single wave to preserve the diversity of the initial sample
and avoid the unknown biases that would arise from multiple waves. In Klovdahl's (1989)
“random-walk” approach, the number of referrals is limited to one and the number of waves
is limited to three.

Interest in chain-referral methods has been {ueled by recognition of their power 1o access
members of hidden populations. As demonstrated in the literature on the “smali world,” even
in a nation as large as the United States, every person is indirectly associated with every ather
person through approximately six intermediaries (Killworth and Bernard 1978-1979). There-
fore, everyone in the country could hypotheticaily be reached by the sixth wave of a maxi-
mally expansive chain-referral sample. This ability 10 reach even those who shun public
locations makes chain-referral sampling potentially powerful as a method for sampling hidden
populations.

Because ol biases associated with the method, however, chain-referral sampling is gener-
ally considered a form of convenience sampling for which no claims of representativeness can
be made. The first bias derives from the choice of the initial sample. As Erickson (1979:299)
states, “inferences about individuals must rely mainly on the initial sample, since additional
individuals found by tracing chains are never found randomly or even with known biases.”
This issue is important because in the contexts where chain-referral methods are used, the ini-
tial sample cannot be drawn randomly.

Second, chain-relerral samples tend to be biased by wvelunicerism (Erickson 1979), in
which more cooperative subjects agree to participate in larger numbers. The initial subjects are
especially likely to be subject to this bias because they frequently make themselves known to
researchers, but subsequent waves of recruits can also be affected by this source ol bias.
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Third, bias depends on the manner in which chain-referrals take place. In Goodman's
siiowball sampling and Klovdahl's random walk procedure, respondents provide the names
aud contact information for population members, and the researcher randomly chooses a
fixed number from that list. This procedure introduces several problems. First, contact infor-
mation is frequently inadequate, so the attrition rate is high {Klovdahl 1989). Knowing how
to go to a friend’s house does not mean one knows the address. This procedure also requires
that respondents violate the confidentiality of other population members, so respondents may
protect their peers by refusing to refer them, a procedure calied “masking.” Finally, asking
respondents 1o put their peers at risk by disclosing their membership in a stigmatized hidden
population is so ethically unacceptable that the Iustitutional Review Boards, which govern
federally funded research in the United States, forbid this form of referral. Therefore, referrals
now generally involve recruitment by respondents rather than by researchers: In accepting
peer recruitment, respondents choose 10 become known to rescarchers. Although this resolves
the ethical and masking problems, it introduces another potential source of bias, differential
recruifment. If one group recruits more peers than other groups, its recruitment pattern will be
overrepresented in the sample.

Fourth, these samples are subject to a honophily bias. As emphasized by Erickson (1979),
referrals are made nonrandomly. Subjects refer those with whom they have social ties, such as
friends, relatives, and other associates; and recruitment patterns reflect these affiliations. As
Galton recognized more than a century ago, affiliations tend to form among those who are
similar in age, education, prestige, social class, and race and ethnicity (McPherson and Smith-
Lovin 1987). Hence, the composition of each wave biases the subsequent wave.

Fifth, referrals occur through network links, so the sample overrepresents those with
large personal networks because the number of potential recruitment paths feading to them is
greater. Thus, the most gregarious and socially central subjects are drawn diflerentially into
the sample, and more socially isolated members of the population are neglected.

The aim of this paper is to show that, despite those biases, indicators compurted from chain -
referral sampling data can provide the basis for valid statistical inference. Statistical inference
is generally based exclusively on probability sampling methods, in which the probability of
each population element being selected for the sample is known. As Kalton (1983%:90) stated,

The major sirength of probability sampling is that the probability selection mechanism permits the
development of statistical theory 1o cxamine the propenies of sample cstimators. Thus, estimators
with little or no bias can be used, and estimates of the precision of sample estimates can be made.

He went on to say that one cannot estimate the precision of estimators from nonprobabil-
ity samples; precision can be assessed only by “subjective evaluation.” However, this is not
necessarily the case. For it a nonprebability sampling process is modeled in sufficient detail, a
statistical theory can also be constructed, based on which unbiased indicators can be con-
structed, and estimates of the precision of sample indicators can be made, The following anal-
ysis is based on the premise that whewn chain-referral methods are statistically modeled in sufficient
deiail, it is possibic to derive statistically valid indicators and quantitatively determine their precision.

The analysis builds on a recent paper (Heckathorn 1997) that introduced a method
termed respondent-driven sampling (RDS), which included two components—a subject recruit-
ment mechanism termed participant-driven recruitment in whicl: lengihy referral chains were
produced by a combination of incentives for peer recruitment and recruiunent quotas; and a
theoretic model of the sampling process from which population indictors were computed. It
showed that the first two sources of bias, choice of initial subjects and volunteerism, can be
reduced by redesigning the sampling process, That paper also specified the condition under
which the fourth source of bias, homophily, would cancel out, and demonstrated through a
sensitivity analysis that even when it did not cancel out, the resulting bias tended to be mod-
est. This paper expands the RDS method in two ways, First, it introduces new means for com-
puting indicators that are not biased by cither differences in homophily or network size.
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Second, it shows how a modification of a bootstrapping procedure can be employed to analyze
the variability of indicators and thereby compute standard errors for population estimates.
Part 1 summarizes the analytic models that provided the technical basis for RDS (Heck-
athorn 1997} and analyzes their limitations. Part II extends the analysis to show how sources of
bias that remained uncontrolled in the original presentation of RDS can be controlled. Part III
introduces means for computing standard errors and analyzes the conditions under which RDS-
derived population estimates are most and least statistically efficient. Finally, the conclusion dis-
cusses remaining limitations of the method, and potential further refinements and applications.

1. Limitations of Respondent-Driven Sampling

As originally presented (Heckathorn 1997), respondent-driven sampling was based on two
analytic models. The first, the Markov model provided a statistical model of the sampling pro-
cess; the second, the homophily moedel, provided a statistical model for an important source of
bias, the tendency of respondents to refer those who are similar. This section summarizes the
limitations of these models. Because the focus of the discussion is methodological rather than
substantive, details regarding the larger context of the study (e.g., its role as part of a HIV-preven-
tion intervention termed a peer-driven intervention that was developed with Robert Broadhead)
are omitted {see Broadhead and Heckathorn 1994; Heckathorn 1990; Heckathorn, et al. 1999).

Sampling as a Markov Process

A chain-referral sample can be viewed as a stochastic process in which the social charac-
teristics of each recruiter affect the characteristics of the recruits. In the case of race and ¢th-
nicity, this means that recruiters of each ethnic group' generate a distinct ethnic mix of recruits.
For example, Table 1A reports recruitment by race and ethnicity in a study of injection drug
users. A tendency toward within-group recruitment is readily apparent. For example, non-
Hispanic whites, on average, recruit 81% from within, 8% Hispanics, 6% non-Hispanic blacks,
and 5% others. Hence, recruiting occurs preponderantly within the ethnic group, but cross-
ethnic recruitment also occurs. Similarly, Hispanics recruit, on average, 45% other Hispanics,
43% whites, 10% blacks, and 2% others, so the tendency toward within-group recruitment
persists. This pattern continues among blacks, whose in-group recruitment rate is 36%, and
the number of acts of recruitment by “others” is too small (n = 7) to reveal any consistent pat-
tern. What is clear is that ethnicity affects recruitment as does gender (sce Table 1B).

Recruitment can be modeled as a Markov process, a form of stochastic process with two
essential characteristics. First, the process can assume a limited number of states, e.g., four
ethnic groups. Second, the process is state dependent, where the probability of moving from
state to state depends on a transition probability matrix, e.g., when Table 1's recruitment pro-
portions are interpreted as probabilities (i.e., see the shaded portion of Table 1A}, the probability
that the next recruit will come from a given group depends on the group from which the current
recruiter comes. Thus, the probability of the next recruit being Hispanic is 45% if the cur-
rent recruiter is Hispanic, 14% if that recruiter is black, 8% if the recruiter is white, and 6% if
the recruiter comes from the “other” group.

Analysis showed that the recruitment process had several characteristics. First, it was
found to be a memoryless process, in that recruitment patterns depended only on the
recruiter, not on the recruiter’s recruiter. This means that recruitment corresponded to what is
termed a first-order Markov process (Heckathorn 1997:183). Second, no groups recruited
exclusively from within. Therefore, recruitment was “ergodic.” A process is termed ergodic if,

1. Here and elsewhere in this paper, Blau’s (1977) use of the term group is adopted, in which this term refers both
to groups in the standard sense (i.e., sets of affiliated individuals} and 10 collectivities (i.e., sets of individuals who share
a common demographic or other characteristic such as members of a racial or ethnic group).




Table 1 « Recruitment by Race/Ethnicity and Gender
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Race and Ethnicity of Recruit

A: Race and Ethnicity White Hispanic Black Other Total
Race and ethnicity of person who recruited
Non-Hispanic white L R A
Recruitment count ‘020 -0 8 e 126
Selection proportion, § " 810 T 0790 063 S D48 1
Adjusted count }07.657 10,555 - - 8444 - 6333 132.988
Hispanic e N T
Recruitient count T 42
Selection proportion, § T 024 1
Adjusted count D763 32.036
Non-Hispanic black -
Recruitment count 14
Selection proportion, § 1
Adjusted count 17.881
Other
Recruitment count 8
Selection proportion, § 1
Adjusted count 7.096
Total distribution of recruits 190
Sample distribution, SD 684 .189 .089 .037 1
Equilibrium, E 7 169 094 037
Mean network size, N 55.2 384 63.3 76.7
Homoephily, H 362 317 301 -1
Population estimate, P (linear least squares) 702 198 .08 .02
Standard error of P 048 038 029 .013
Gender of Recruit
B: Gender Female Male Total

Gender of recruiter

Female
Recruitment count
Selection proportion, §
Adjusted count

Male
Recruitment count
Selection proportion, §
Adjusted count

Total distribution of recruits
Sample distribution, SD
Equilibrium, E

Mean network size, N
Homophily, H

Population estimate, P
Standard error of P

_34.%1»96 :

58
305
313

37.5
018
41
.039

130525,

190
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as a process moves from state (o state, any state can recur, and there is a zero probability that
any state will never recur. When applied to a chain-referral sample, the states refer to the
characteristics of the subjects, the movement from state to state refers to a recruiter with one
set of characteristics recruiting another subject with the same or different characterisiics, and
that any state can recur means that after one or more recruitment waves a recruit can have
the same characteristics as the earlier recruiter. In essence, this means that recruitment cannot
become trapped within a single group or set of groups, as would occur if once the recruitment
chain centered that group, no exit (i.e., no outside recruitment) were possible. Thus, analyses
revealed that recruitment corresponded to what is termed a “regular” Markov process.

This modeling of the recruitment process is relevant to understanding the reliability of
indicators drawn from respondent-driven samples because of two deductions regarding regu-
lar Markov processes. First, the law of large numbers for reqular Markev chains (Kemeny and
Sneil 1960:73) implies the following (Heckathorn 1997):

Theerem 1. As the recruitment process continues from wave 1o wave, an equilibrium mix of
recruits will eventually be attained that is independent of the characteristics of
the subject or set of subjects from which recruitment began.

Thus, allowing recruitment to operate until equilibrium is rcached in a sample corresponding
1o a regular Markov process avoids the central problem for sampling hidden populations—that
the sample’s characieristics merely reflect the initial sample. Insiead, the sample composition
is whelly independent of the initial subjects, For example, Figure 1 shows what would be
cxpected over the course of eight waves had recruitment hegun with secds of a single ethnicity.
Figure 1A projects the expected course of recruitment by wave had it begun with all Hispanics.
The composition of the waves ultimately reach a stable equilibrium at 70% white, 17% His-
panic, 9% black, and 4% other. Figure 1B projects the cxpected course of recruitment had it
begun with all non-Hispanic whites, and exactly the same equilibrium is atrained, This shows
graphically how the sample can reach the same equilibrium point, irrespective of the subjects
with whom recruitment began. What happens, in essence, is that as sampling progresses, the
effect of the starting point become progressively weaker until it becomes negligible.

The law of large numbers for regular Markov chains provides a means for computing the
equilibrium analytically (see Kemeny and Snell 1960:72). The equilibrium state (E = E_ E,, ... ,E,)
for a systern with N types of subjects is found by solving a system of N lincar equations:

| =E +E +... +E,

E:z = SmEu + S!mEb t.o.oo+ SnuEn
E{' - SubEa + SH:E#- +.o.F SHFIEH (l)
Enfl = S[T,H ]Ea +. Sb.az—lE.h +.oF Sn,fr lEn

where E, E,. ... E_ are the equilibrium proportions for groups A, B, to N, respectively, and S
is the probability that a subject of type X will recruit a subject of type Y. The first equation
states that the equilibrium proportions must sum to one. The subsequent equations express
the groups’ equilibrium sizes as a function of the equilibriumn sizes of the groups and the
groups’ proportional recruitment of cach group. Because this is a system of N linear equations
with N unknowns, there is a unique solution.
For example, a two-group system is defined by the equation system,
1 =E +E, i2)
E,=S.E +S,E,

[ ]

Solving this system yields,
Siia

l el
E,=1-F

o
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Figure 1 = Race and Eihnicity of Recruits Expected by Wave in a Respondent-Driven Sample,
Beginning with only White or Hispanic Seeds

For example, in Table 1B, where 5, = .264 is the proportion of females recruited by males
and §,, = .42 is the proportion of females recruited by females, the equilibrium distribution of
female IDUs is E, = .264/(1 — .42 + .264) = .313, and for males E, = | - .313 = .687. There-
fore, the equilibrium comprises 31% female IDUs and 69% males.
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Regular Markov chains are characterized by what Kemeny and Snell {1960:72) describe as
“a very fast kind of convergence.” This conclusion is based on a deduction stating thar conver-
gence occurs at a geometric rate. The implication was described as follows (Heckathorn 1997):

Theorem 2: The set of subjects generated by a respondent-driven sampling process
approaches equilibrium at a rapid (i.e., geometric) rate.

Thus as the sample expands from wave to wave, the mean composition of the subjects in the
leading wave approaches equilibrium at a geometric rate, However, because the overall sam-
ple includes both current and preceding waves, it approaches equilibrium at less then geomet-
ric, but nonetheless rapid rate. For example, in the race/ethnicity analysis, the leading wave
approximates equilibrium within 2% after ouly three waves, but when respondents recruit
three peers, the overall sample requires six waves. The size of this lag depends on the number
of recruits per subject. For example, if this number is increased to seven, only five waves are
required. This occurs because the greater the number of recruits per subject, the greater the
rate at which the number of subjects in each wave increases, and hence the less will be the
influence of earlier waves on sample composition. In previous applications of RDS, equilibrium
was approximated within six or fewer waves (Heckathorn 1997; Heckathom, et al. 19993,

If recruitment takes the form of the simplest Markov process, that is, a linear chain begin-
ning with a single seed, the implication of this theorem is that recruitment chains should be
long. For only then will most of the subjects be drawn from waves after which equilibrium
was attained. However, producing linear chains faces a problem. For example, in Klovdahl's
{1989) random walk approach, which employs linear recruitment chains, but most chains are
shorter than the maximum of three steps, due to attrition when a respondent fails to provide
a valid referral. Therefore, the approach employed in many chain-referral sampling methods
allows respondents to produce multiple referrals, thereby generating a tree-shaped recruit-
ment network. This approach has two advantages. First, it helps to resolve the attrition prob-
lem, because after a seed has produced multiple referrals, no single subject’s failure to produce
valid referrals can stop the sampling process. Therefore, given ample time and resources,
recruitment chains of virtually any length can be generated. Second, multiple referrals help to
reduce bias from the choice of initial subjects, because as recruits become more socially distant
from the seed (i.e., as the sample expands wave by wave), they also become more numerous.
This occurs because the number of respondents in each wave expands geometrically at a rate
determined by the number of referrals produced by each respondent.

There is also a potential complication from the introduction of multiple referrals, because
the tree-shaped recruitment siructure produced by multiple referrals does not correspond to
the linear structure assumed by the Markov-chain model. To formally analyze the implica-
tions of this structural difference for the applicability of the Markov model to chain-referral
sampling would exceed the scope of this paper, but two comments can be offered. First, a tree-
shaped referral structure can be analyzed as a ser of linear structures, e.g., a respondent from
the final wave can be seen as the product of a linear chain beginning with the seed and whose
links correspond to intermediate waves, It seems reasonable to suppose that an analysis that is
valid for a linear chain will also be valid for a set of such chains. Second, whether the Markov
model fits the darta should be determined empirically, by comparing the actual sample compo-
sition with the sample composition that will be theoretically expected if the sampling process
corresponds to a Markov process, that is, the equilibrium. For example, in a previous application
of RDS (Heckathorn 1997:188-189), a large {17.1%) discrepancy was found between a theoret-
ically-computed equilibrium and a sample mean, and an examination revealed that recruitment
was not ergodic. This problem was solved by dividing the sample into two sub-samples, each of
which was ergodic. In contrast, in the analyses reported in Table 1, the correspondence between
the equilibrium and sample means is close. The mean absolute differences between the equi-
librium and sample means for the race/ethnicity and gender analyses are only 1%. Therefore,
the fit with the Markov model appears to be good. This suggests not only that the ergodic and
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other assumptions of the Markov model were approximated 1o a reasonable extent, but also that
other factors, such as the nonlinear recruitment structure, did not serve as a confounding factor.

It might seem that long referral chains would be unnecessary, given that the equilibrium
can be computed from the transition probability matrix, and this matrix depends not on the
length of chains, but on the number of referrals. Thus, one could follow Frank and Snijders
{1994) recommendation and begin with a large number of seeds chosen for their diversity,
and conduct only a single wave. However, this approach has two disadvantages. First, the
sample would lack sociometric depth. The part of the hidden population accessible to
researchers may not be representative of the full population. Even when chosen for diversity,
the seeds constitute a mere convenience sample. If only a single wave is conducted, all of the
subjects will lie within a single link of those respondents who are accessible to researchers.
More socially distant sectors of the population will therefore not appear in the sample, In con-
trast, when recruitment chains are a dozen or more steps in length, consistent with the above-
noted literature on “six degrees of separation” all members of the population should be reach-
able. Second, long referral chains are efficient, because respondents who are neither a seed
nor a member of the final wave play a dual role, as both the source and the product of refer-
ral. The longer the referral chains, all else equal, the greater is the number of these intermedi-
ate respondents, and therefore the greater is the ratio of referrals to respondents.

In RDS, long referral chains are produced in two ways, First, respondents are rewarded
for recruiting; rewards averaged $14 each. Second, quotas were imposed on recruitment so
that no small subset of recruiters could monopolize recruitment rights; the quota was set at
three recruits after the initial interview and each follow up interview. Quotas on recruit-
ment were implemented using a coupon systern, in which potential recruiters are given dollar-
bill-sized coupons to give their recruits. The coupon includes the study name, a phone num-
ber to call to make an appointment for an interview, and a map to the interview site, The
coupon also includes a serial number that documents the link between the recruiter to
whom it was given and the recruit who returns it to the project {Heckathorn, Broadhead,
and Sergeyev 2001). Combining recruitment incentives and quotas vielded recruitment
chains that were very long by the standards of the chain-referral literature; in some cases a
single seed initiated a chain of referrals that resulted in more than one hundred recruits
over the course of more than a dozen waves. A second reason for introducing quotas was to
avoid order elfects in recruitment. As shown in the network literature on name generators
(Burt 1986), first named persons differ from last named persons. Limiting recruitment cou-
pons to three ensured that all recruits were near the beginning of the queue of potential
recruits.

The introduction of recruitment incentives not only lengthened referral chains, it also
reduced bias due to volunteerism (Heckathorn 1997). Recruitment incentives harness peer
pressure by motivating the potential subject’s peers to employ their social influence. In
essence, recruitment incentives serve as transformers that convert material incentives {i.e.,
the reward to recruiters) into peer-based symbolic incentives (i.e., the social influence exer-
cised by recruiters). A comparison of recruitment patterns and self-reported network composi-
tion based on race and ethnicity, gender, and homelessness showed a strong asseciation
(Heckathorn, et al. in press). Therefore, respondents appeared to recruit as though they were
selecting randomly from their personal networks.

In sum, chain referral samples can yield reliable indicators, in that sample means reach
the same equilibrium independent of starting point. What is required is that recruitment
chains be long enough for equilibrium to be approximated. In the RDS methed, such referral
chains were produced by a recruitment mechanism termed Participant-Driven Recruitment
that combines recruitment incentives and quotas, However, an important limitation of the
analysis was the absence of means to assess the variability of indicators quantitatively. Section
III below removes this limitation by introducing means for computing standard errors for pop-
ulation estimates.
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The Homophily Model

Reliability is a necessary, bul not sufficient condition for an etfective indicator, for a reli-
able indicator may be biased. The original presentation of RDS (Heckathorn 1997) analyzed
one type of systematic bias in data from chain-referral samples, that due to homophily. Draw-
ing on Fararo and Sunshine’s (1964), Blau's (1977, 1994), and Rapoport’s (1979) models,
homophily was formally delined as foliows: Perfect homophily, in which all tics are formed
within the group, is assigned the value +1; and no homophily, in which ties are formed with-
out regard to group membership, is assigned the value zero. When an individual forms ties
within the group, say, a third of the time, and forms ties randomly, without regard to group
membership, two thirds of the time, the level of homophily is plus one third. For example, as
shown in Table 1A, Hispanic homophily is .317. This implics that they recruit from within
31.7% of the time; the other 68.3% of the time they recruit randomly, and given that there
are an estilmated 19.8% Hispanics in the population, nonhomophily governed recruirments
produce an additional 13.5% (68.3% X 19.8%) Hispanic recruits, tor a total of 45.2% (31.7% +
13.5%) recruits from within.

The concept of homophily can be extended to cover the case where a bias exists against
forming ingroup ties. This is termed heterophily. When all tics are formed outside the group,
homophily is assigned the value — 1. Intermediate levels of negative homophily are defined in
a way parallel to intermediate positive levels: I, lor example, ties are formed with those out-
side the group, one third of the time, and ties are lormed randomly, without regard to group
membership, two thirds of the time, homophily is negative one third.

To lurther specify the homophily model, consider the case of a system comprising two
groups, A and B, where homophily is positive. The probability that a member of group A will
select from the in-group, S, is the sum of the probability that sclecrion is controlled by
homaophily, an event with probability H,, and the probabitity that homophily does not govern
choice (1 ~ H,), weighted by the proportion of members of group A in the popularion, P, i.e.,

S.=H,+(1—-H)P, (4}

By similar principles, the probability that a member of group B will select a member of group
A is the probability that homophily does not govern B’s choice (1 — H,}, weighted by the pro-
portion of members of group A in the population, i.c.,

S(’rr = {1 - Hfi)P.! (5)

Extending this model to cases where homophily is negative requires slight modifications in
these expressions. For example, when a group is heterophilous, forming an in-group tie
requires the conjunction of two events, that heterophily not govern tie formation, an event
with probability 1 + H,, and that a member of the in-group then be selected irrespective ol
group identity, an event whose probability depends on the group’s proportional size, P,, so the
probability of forming an in-group tie is the product of the probabilities ol these two
events, i.e., if H, < 0, then §_, = (1 + H,)P,. In sum. homophily’s absolute value iH,| is the
probability that homophily governs tie formation. When homophily is positive, it is the prob-
ability that a te is formed from within rather than being formed irrespective of group
affiliation, and when homophily is negative, it is the probability that a tic is {ormed from
the out-group rather than being formed irrespective of group affiliation. With this set of
equations, the model specifies the relationship between the population size (P), and selec-
tion probability (S).

Based on the combination of this model for homophily and the Markov model, a theorem
was dertved demonstrating that the equilibrium distribution (E) equals the population distri-
bution (P) if homophily is equal. In that case, the equilibrium provides a nonbiased popula-
tion estimate. In essence, what was shown was that groups with higher homophily are over
sampled, but over sampling cancels out if all groups have equal homophily. The equilibrium
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thereby converges with the population distribution, and hence the former becomes a non-
biased estimator for the latter. This conclusion was stated in a third theorem:

Theorem 3: A respondent-driven sample is unbiased by homophily (ie., E = P) if the
homophily of each group is equal (i.e., for each group x and y. H, = H}.

Theoretic arguments were then offered suggesting that high homophily in one group tends to
produce high homophily in other groups, thereby reducing differentials in homophily. Then a
sensitivity analysis was conducted in which, assuming varying degrees of association in
homophily, the results indicated that the correlation between equilibrium and population
composition was high even when homophily was weakly associated, and it remained substan-
tial even when homophily across groups were independent. Therefore, the sensitivity analysis
suggested that the biasing cffects of unequal homophily would be modest. This analysis had
two limitations. First, no means for measuring homophily were offered, because a crucial term,
population size (i.e., P in equations 4 and 5), is not known when sampling a hidden population .
Second, no means were provided for controlling for any bias resulting from unequal homoph-
ily, The limitations are overcome in Section II below.

By way of dosing this section, it should be noted that the initial presentation of RDS had an
unacknowledged strength, providing a means for controlling bias due 1o differential recruitment.
This bias occurs when one group recruits especially effectively and its distinctive recruitment pat-
tern is thereby overrepresented in the sample. Though recruitment quotas reduce this form of
potential bias, given that not all subjects fulfill their quotas, variation remains. The Tables pro-
vide evidence for such recruitment differentials, For example, in the gender analysis, male
IDUs made up 69% of the sample (132/190}, but they recruited 74% of respondents {140/
190). s0 they recruited more on average than did female IDUs. Differentials also exist in the
ethnicity analysis, with Hispanics and others recruiting more, and blacks and whites recruiting
less. The observed differences between sample composition and the equilibrium in Table 1
results, in part, from these differentials in recruiting.

This source of bias does not affect the Markov model’s equilibrium, because it depends
not on the absolute number of recruits from each group, but rather on the proportional dis-
tribution of recruits (i.e., the S terms). These arc what drive the model. That is, because
transition probabilities are based on the proportional distribution of each group’s recruits,
the probabilities remain the same whether all groups recruit equally or some groups recruit
more or less than others. To see why this is the case, consider the effect of demographically
adjusting the recruitment counts to compensate for differences in recruiting success. This
was done in the third entry in Table 1's recruitment cells, in which recruitment counts were
adjusted based on the assumption of equal recruitment success such that the number of
recruits from each group (the row sum) equals the number of recruitments by each group
(the column sum}, without any change in recruitment pattern or sample size. That is, the
adjusted recruitment count is the selection proportion multiplied by the equilibrium propor-
tion of recruits from that category and the total number of recruitments for all categories.
For example, females recruited a proportion of .42 other females, the proportion of females
in the equilibrium sample is .313, and total recruitment was 190, so the adjusted recruit-
ment count for females is 42 X 313 X 190 = 24.98. This is the expected number of recruits
of female 1DUs by female IDUs had both genders recruited with equal success. As thus
adjusted, the number of recruitments of and by female IDUs {i.e., the column and row
sums) is the same, 59.475. Because the recruitment proportions (i.e., the second entry in
each cell, the S terms) are the same whether the calculation is based on the actual or the
adjusted counts, a term computed based on these proportions, such as the cquilibrium, E, is
independent of differential recruitment. In essence, the equilibrivm is computed as though
all groups recruited equally.
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II. Extending The Respondent-Driven Sampling Method

Given the limitations of the above-described models, the need for additional theoretic
development is evident. Such modeling can begin by analyzing in more detail the structure of
recruitment networks. An important feature of recruitment networks generated by RDS is
that they reflect preexisting social relationships among subjects. For example, recruiters
were usually friends or acquaintances {(90%), and most other recruiters had even closer
relationships, e.g., sex partner, spouse, or other relative (7%). Only a small proportion of
recruiters were identified as strangers (1%), and a few others had a relationship identified
as “other” (2%).

The recognition that a preexisting social relationship linked recruiters and recruits is
significant theoretically because such relationships generally are reciprocal (e.g., if A has a link
to B, then B has a link to A). This provides the basis for a richer model of recruitment struc-
ture. When relationships are reciprocal, for any two groups A and B, the number of ties from
Ato B, T,, equals thosefrom B to A, T, ie.,

Tab = Tb:; (6)

The number of such crosscutting ties depends on three factors. One is the mean personal net-
work size for members of the group, where each individual’s personal network size is the
number of other population members he or she knows. This is therefore also the number of
potential recruits known to the person. A second factor is the proportional size of the group,
P,. The third term is the proportion of crosscutting ties. This propertion is the second line in
each recruitment cell in Table 1, and in the model it is also treated as reflecting the probability
of forming a crosscutting tie; e.g., S, is the probability that a member of group A will form a
tie with a member of group B. Therefore, the number of ties from group A to B is the product
of these three terms,

T, =PNS (7)

atVaak

Equation 6 can be expanded based on equation 7 as follows:

PNSa = PuNSy, {8)

a

After substituting 1 — P, for P,, this expression can be solved for P, to derive an estimate of
population size, -

SbaNb

P, =28 =
S}mNh + SabNa

a (%)
This s the estimate of population size based on the reciprocity model. It provides an estimate of
the proportional size of the hidden population based on two sources of data: the transition
probabilities derived from the analysis of recruitment patterns, and self-reported personal net-
work size. The latter is gathered routinely in health-related research (Killworth, et al. 1990)
because it is used to measure social integration and the risk of a number of other conditions,
including depression (Marsden 1990). The current study was no exception, so data on network
sizes were available. For example, female IDUs had substantially smaller networks (N, = 37.5)
than did male IDUs {N_ = 57.1). When the above expression is used to estimate the proportion
of IDUs by gender, the estimated proportion of female IDUs is P, = .41 (i.e, P, = (.264 X 57.1}/
(.264 X 57.1 + .58 X 37.5)). Similarly, the estimated proportion of male IDUs is P, = .59.
When the population estimate derived from the reciprocity model is compared with the
equilibrium or sample distributions, the results are consistent with the commonsense notion
that groups with larger networks will be over sampled. For example, male IDUs had personal
networks that were on average one half larger than female IDUs. Though male 1IDUs made up
an estimated 59% of the population based on the reciprocity model, they were 68.7% of the
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equilibrium and 69.5% of the actual sample. Similarly, groups with smaller networks are under
sampled. Though female IDUs made up an estimated 41% of the population based on the reci-
procity model, they made up only 31.3% of the equilibrium and 30.5% of the actual sample.

Just as the analysis of the equilibrium extends straightforwardly to systems with more
than two groups, so too does the reciprocity model. In both cases, analyzing a system requires
solving a systemn of linear equations. The reciprocity model in a system with N groups can be
represented by a system of equations, in which the first states that proportional population
sizes must sum to one, and the others express the reciprocity principle for each of the pair of
groups, where the number of pairs is (N(N — 1))/2. Therefore, a system with four groups is
described by seven equations, as follows:

1=P,+P,+P +P,
PN, = P,N,S,,

a* tg-ak
PGNaSR( = PCNfSM
PNS. = P,NS,. (10}

P NS, = PNS,
PN = PN Sy

PNSy = PalNaSy

Here the N terms refer to network sizes, the S terms derive from the transition matrix, and the
P terms are the population estimates to be derived from the reciprocity model. Solving this sys-
tem of equations requires more than standard algebra because of a superabundance of equations.
To be determinate, a system of linear equations must have the same number of equations and
unknowns, yet here there are seven equations and only four unknowns (i.e., the P terms), so
the system is over-determined.

If the fit between the reciprocity model and the data were perfect, it would suffice merely to
choose four equations arbitrarily and solve for the four P terms, However, since fit with real data
is never perfect, that choice matters. For example, if one focuses only on recruitments involving
non-Hispanic whites, and therefore considering only the first four equations of equation system
10, solving them using standard algebra vields a population estimate of .681, .181, .075, and .062
for whites, Hispanics, blacks, and others, respectively. However, if one focuses only on recruit-
ments involving Hispanics, therefore considering equations 1, 2, 5, and 6 of equation system 10,
the population estimate is .725, .193, .078, and .004. That these rwo estimates differ by only an
average of 2.9% indicates that the fit with the reciprocity model is substantial.

The standard means for solving over-determined systems is linear least squares (Fare-
brother 1988), a procedure that employs the same logic as linear regression.? When the ordi-
nary least squares (OLS) version of this method is applied to the race/ethnfcity analysis, the
estimated sizes are .702, .198, .08, and .02, for whites, Hispanics, blacks, and others, respec-
tively. This corresponds fairly closely to the above two partial estimates, differing by an aver-
age of 2.1% and 1.2%, respectively. The advantage of the linear least squares approach is that
it relies on a standard statistical method to resolve conflicts among the equations.

Data Smoothing

An alternative method for deriving the population estimate draws on the logic of the rec-
iprocity model to solve the problem of over-determination. Recall that in a system where ties
are reciprocal, the number of directed ties between any pair of groups will be equal. There-
fore, if recruitment patterns reflect the distribution of ties in the system, as would occur in
equilibrium if all groups recruited equally effectively, the number of recruitments across
groups would also tend to be equal. Therefore, what were above termed demographically
adjusted recruitment counts can be theoretically expected to approach equality across groups.

2. Tam grateful to Mathew Salganik for suggesting the use of linear least squares in this context,
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Table 2 « Recruitment by Race/Ethnicity and Gender, with Data Smoothing

Race and Ethnicity of Recruit

White Hispartic Black Other Toral

Race and ethnicity of person who recruited

Non-Hispanic white
Adjusted and smoothed count
Selection proportion

Hispanic
Adjusted and smoothed count
Selection proportion

Nemn-Hispanic black

132.988

Adjusted and smoothed count
Selection proportion

Other
Adjusted and smoothed count

Selection proportion

Total distribution of recruits 132.988 32.036 17.881 7.096 190
Sample distribution, SD St 169 094 037 1
Equilibrium, E 7 169 094 037
Homophily, H 430 288 303 —1

Population estimate, P 666 231 078 026
Standard error of P .05 042 .028 013

Consistent with this proposition, the tables show that these cross-recruitment counts are posi-
tively associated. For example, in Table 1A, the correlation between raw cross-group counts is
.78, and this increases 10 .85 when the counts are demographically adjusted.

From the standpoint of the reciprocity model, differences across groups in demographi-
cally adjusted recruitment counts reilect sampling error. Therefore, the best estimate for these
counts is the mean count across groups, which may be termed the smoothed count. These
means are reported in the first linc of each recruitment cell of Table 2. For example, the
smoothed cross-recruitment count between Hispanics and non-Hispanic whites reported in
Table 2 is the mean of their demographically adjusted counts from Table 1A, (8.444 + 8.94}/
2 = 8.692. Thus, by averaging demographically adjusted recruitment counts in reciprocal
cells, reciprocal counts become identical, and the recruitment matrix is rendered exactly com-
patible with the reciprocity model.

Table 2 shows the effect of data smoothing on the ethnicity analysis. Smoothing brings
the recruitment counts into precise alignment with the reciprocity model's assumptions and
thereby provides an alternative solution to the problem of over-determination. For example,
in a four-category case such as the race/ethnicity analysis, the population estimate is the same
whether based on all recruitment information (i.e., all seven equations in equation system 10
solved by linear least squares), or on only a partial model {e.g., only the first four equations in
equation systeml10). The smoothed cstimate is P = {666, .231, .078, .026}, for whites, His-
panics, blacks, and others, respectively. This differs by an average of 1.9% from the popula-
tion estimate derived by linear least squares without smoothing. This relatively small
discrepancy reflects the strong, but not perlect, correspondence of the original recruitment
matrix to the reciprocity model. Of course, data smoothing has no effect on two-category
systems because the over-determination problem does not arise. Unless otherwise specified
subsequently in this paper, population e¢stimates for systems with more than two categories
will employ data smoothing.




Respondent-Briven Sampling

Controlling Bias Due to Differential Network Size

A commonsense notion holds that when network sizes are equal, the group with the
larger network will be over sampled. The implication is that when network sizes are equal,
this source of bias will not exist. This intuition can be tested formally by checking to see
whether the population estimate, P, equals the equilibrium distribution, E, when network
sizes are equal. In that case, in a two-group system, network sizes for each group will be equal
s¢ N, can be substituted for N, in equation 9's expression for P. Furthermore, 1 — §,, can be
substituted for §,,. Making these substitutions into equation 9 yields,

P = S}:aNa
! SbaNrr +{1 - Sdn)Na

(11

With algebraic manipulation, network size cancels out and the cxpression can be simplified
and rearranged as follows:

=S (12)
y I 7Saa+Sba

Note that this is the same as the equation for the equilibrium (see equation 3 above}. Thus, if
network sizes are equal, the equilibrium distribution is equivalenr 1o the distribution from
which the sample was drawn {i.c., E = P}, and in 1his sense the sample is unbiased. The con-
verse is also the case, that is, if the sample is unbiased (i.c.. if E = P), then network sizes are
equal. Thar is, in an unbiased system,

E, =P, (13)

From equations 3 and 9 above, this expands to

Sba — SMNb
1 - Saa + Sba Shan’J + SbibNa

(14}

Given that S, + 5, = 1, 1 — 5, can be substituied for S,,. With this substitution, solving for
network size, N, yields

N, =N, (15)

Furthermore, given that the reciprocity model treats systems in cssence as pairs of dyads, this
result generalizes 1o systems with more than two categories. This leads to a fourth theorem:

Theorem 4: A respondent-driven sample is unbiased by network size (i.e,, E = P) if and
only if the network sizes of each group are equal (i.e., for each group x and y,
N, =N}

This theorem demonstrates the consistency of the reciprocity medel with the assumption that
differential network sizes are a source of bias in chain-referral sampling. However, the prime
significance of the reciprocity model on which it is based is that it provides a means lor com-
puting a population estimate that is not biased by unequal network sizes.

Network Structural Constraints on Homophily

Theorems 3 and 4 are parallel in that each holds that in the presence of a condition—
equal homophily and network size, respectively—the equilibrium will be unbiased (i.e., E =
P). Furthermore, theorem 4 holds that the reverse is also the case; if the equilibrium is
unbiased, network sizes are equal. The conditions imply a connection between homophily
and network size, even though these two terms have been treated as independent in the liter-
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ature, because the absence of a connection would introduce a contradiction. For example,
consider a hypothetical case in which hemophily is equal but network sizes are not. According
to theorem 3, E = P, but according to theorem 4, E # P. Obviously, if both theorems are valid,
this hypothetical case is impossible, and equal homophily implies equal network size. An
examination of the structure of networks of reciprocal ties shows that this nonintuitive con-
clusion is correct.

Consider first, a system contrary to the assumptions ol the reciprocity model, where ties
are nonreciprocal. Examples of nonreciprocal ties are admiration and knowing a person’s name,
For example, celebrities are known and perhaps admired by many people they do not know.
In such cases, any homophily combination is possible. For example, if individuals admire only
members of their own group, there is strict homophily; if individuals admire only members of
the other group, there is strict heterophily; if everyone admires only members of one group,
that group is homophilous and the other group is heterophilous.

If ties are reciprocal, as in the cases of marriage and friendship, this range of possibilities
does not exist, because establishing a tie requires mutual consent and, thus, the combination
of strict homophily and heterophily becomes impossible. If one group is sirictly homophilous,
the other has no out-group members with which to establish heterophilous ties, so it, too,
must be homophilous. The network-structural constraints on homophily are especially clear
when groups of differential status interact. For example, according to Eder’s (1985) study of
U.S. high schools, athletes and cheerleaders have the highest status. Members of these groups
tend to associate with one another, thereby limiting others’ opportunity to gain status by asso-
ciating with them. This may be termed power homophily because it reflecis the elite’s control
over tie formation. The homophily of the high school elite thereby induces homophily among
lower-status students, A similar process occurs in career-based hierarchies, as among musi-
cians where the opportunity to play with a luminary represents an important advance in one’s
career (Heckathorn and Jeflri 2001). This may be termed exclusion homophily because it reflects
their exclusion from elite circles.

When a group replaces out-group ties with in-group ties and its network size remains
unchanged, it becomes more homophilous. This loss of out-group ties also increases the homoph-
ily of other groups. Thus, homophily levels are positively related, and this occurs not because of the
psychodynamic processes addressed by Simmel (1955}, but because of the structural proper-
ties of networks of reciprocal relationships. In contrast, when a group adds in-group ties with-
out altering out-group ties, it becomes more homophilous and network size increases. The
homophily of other groups is unchanged, so whether a change in a group’s homophily affects
other groups depends on network size. Thus, changes in homophily and network size are
interrelated.

The association between homophily and network size can be specified by combining the
homophily and reciprocity models. To simplify the analysis, again consider a two-group sys-
tein. Equation 5 specified the relationship between population size and homophily. If it is
solved for population size, P,, the result is,

p =

«TTH, (16)

Similarly, for group B, P, = 5_,/(1 — H,). If these expressions for P, and P, are substituted into
equation 8 above, the result is,

— Sab
Nasab -1 NbSba (17}
a
This equation provides the means for identifying the implications of equal homophily for

the reciprocity model. This can be done by setting the homophily equal (i.e., substitute H for
H,), and solving for N,. Algebraic manipulation produces,
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N, =N, (18)

Thus, if homophily is equal, so too is network size. This demonstrates the consistency
between theorems 3 and 4. In contrast, equal network sizes do not imply equal homophily,
except in a special set of systems, that is, two-category systems with positive homophily. For
example, in the ethnicity analysis, if network sizes are made equal, homophily remains
unequal (i.e., H = {.365, .341, .29, — 1) for whites, Hispanics, blacks, and others, respectively).
Nonetheless, changes in network size remain linked to changes in homophily. For example, in
a system with any number of categories, if a cross-cutting tie is severed with no other changes
in the system, the affected groups have both smaller mean network sizes and higher homoph-
ily: and if a cross-cutting tie is created, the affected groups have both larger mean network
sizes and lower homophily. so homophily levels remain positively related. More generally, the
creation or abandonment of ties have implications for both network size and homophily
whose effect is to establish a conceptual link between these two concepts, a link specified by
the above model. Therefore, by controiling for the effects of differential network size, the reciprocity
model thereby alse controls for the effects of differential homophily.

The combination of the homophily and reciprocity models provides the basis for point
estimates of homophily that were not possible using only the Markov and homophily models.
Homophily (i.e., see equation 3) is a function of both transition probability, which is provided
by the chain-referral data, and population size, which can be computed using the reciprocity
model based on both transition probability and network size. For example, homophily by gen-
der (see Table 1B) can be computed as follows: From equation 5, above, §,, = (1 — H,) X P,,
so by substitution where females are group A and males are group B, .264 = (1 — H,) X .41,
which yields H, = .355. Therefore, the male IDUs exhibited substantial homophily, forming
networks as though 35.5% of the time they formed a tie to another male IDU, and the rest of
the time they formed a tie randomly irrespective of gender. Solving for the homophily of
female IDUs yields H, = .018, a near zero (1.8%}) level of homophily. Therefore, only the male
IDUs were meaningfully homophilcus. The relationship between homophily and ethnicity is
similarty variable (see Table 2). For example, non-Hispanic whites were the most homophil-
ous (.43). Non-Hispanic blacks and Hispanics had substantial and nearly equal homophily lev-
els (.303 and .288, respectively). These differences in homophily point to the need to take
homophily into account as a potential biasing factor in chain-referral samples. That is, despite
the positive relationship among homophily levels, differences can be great enough to very
significantly affect the sampling process, as is illustrated in particular by the gender analysis.

II1. Reliability of Indictors Drawn from Respondent-Driven Samples

Respondent-driven sampling, like other sampling methods, yields indicator subject to both
systematic and nonsystematic error, Systematic error is of special concern because increasing
sample size does not reduce it. The above analyses showed how to reduce several such sources
of systematic error. However, because sample sizes are always limited, an equally important
focus in sampling is to quantify the relationship between sample size and the variability of
indicators. The question is, if samples of a given size were drawn not once, but many times,
how would the results vary? More precisely, what would be the standard deviation across
these samples, that is. the standard error? The standard error of the reciprocity-based popula-
tion estimate can, therefore, be computed through a procedure somewhat like beotstrapping
{Berkowitz and Diebold 1998), in which the sampling process is simulated. The simulations of
the sampling process employ the following steps. First, a seed from which recruitment begins
is arbitrarily selected. Second, the first recruit is chosen randomly based on the matrix of tran-
sition probabilities. The second recruit then chooses a recruit in the same manner. This process
is continued until the number of recruits equals the sample size. The reciprocity-based popula-
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Figure 2 = Homophily and Standard Error of the Population Estimate, P

tion estimator, P, is then computed based on that simulated recruitment data. Ten thousand such
simulations of the sampling process were conducted, and the standard deviation of these popu-
lation estimates was then computed, to vield the estimate of that estimate’s standard error.

Incidentally, the simulation process could have been made more realistic, by taking into
account the number and composition of the seeds with which sampling began and that sub-
jects could recruit more than one other subject. However, in a series of simulations, these factors
had no significant effect on samples above a minimum size (i.e., about 20), This is cxpected
because of theorem 2, which states that equilibrium is approached quickly. Therefore, the simu-
lations emplovyed the simplest structure—a linear recruitment chain that begins with an arbi-
trarily chosen seed and whose length corresponds to the sample size.

Consistent with usual expectations, the standard error of the population estimate
depends on sample size. Less obviously, it also depends on homophily. As Figure 2 shows,
error is an increasing function of homophily. This occurs because when homophily governs an
act of recruitment, the recruiter does not reach outward and provide information about the
groups composing the system. The greater the homophily, the less information is generated by
each act of recruitment. In the limiting case of perfect homophily, recruitment generates no
information about group composition. Subjects merely recruit others like themselves, so the
sample’s composition remains the same as the seeds from which it began, thereby revealing
no information about the larger population.

Because of the association between homophily and standard error of the population esti-
mate, RDS loses efficiency as homophily increases. That is, the greater the homophily, the
larger the sample size must be to attain any given level of standard error. Furthermore, as is
apparent from the sharply accelerating curve in Figure 2, this relationship is nonlinear. When
homeophily levels are moderate, a given increase has a smaller effect on standard error. For
example, when compared with a baseline of zero homophily, a homophily of 58% doubles
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the standard error, 79% triples it, 88% quadruples it, and 93% quintuples it. These exact
figures depend on the recruitment matrix used for this analysis, but the pattern is characteris-
tic of RDS: Standard error is an accelerating function of homophily. This relationship between
homophily and standard error reflects variations in the independence of observations. The
higher the homophily, the greater the dependence of each observation upon the previous
observation (i.e., the dependence of the recruit’s characteristics upon the recruiter’s character-
istics), and hence the less information is contained in each additional observation. An implica-
tion is that RDS has greater efficiency when sampling systems that have moderate to low
homophily. In the study reported here, the observed homophily levels were moderate {maxi-
mum = 44%), producing slightly less than a doubling of standard error.

Conclusion

In this paper, the RDS method was expanded to include procedures for computing popu-
lation estimates which compensate for bias resulting from differences in respondents’
homophily, personal network size, and recruitment effort. In addition, means for computing
the population estimate’s standard error were introduced. The analyses show that nonproba-
bility samples need not be dismissed as mere convenience samples. If the analysis of bias is
detailed enough to permit the construction of a statistical theory, if the sampling process
is redesigned based on that theory to reduce preventable biases, and if information required
by the theory with which to quantitatively estimate and control for other biases is gathered
during the sampling process, such as information regarding recruitment patterns and network
sizes, valid inferences are possible. Though some of the procedures are computationally inten-
sive, because they involve solving systems of simultaneous equations and simulations of the
sampling process, they are well suited to computer implementation. ®

The analyses in this paper focused on deriving simple population estimates, such as the
proportional distribution of the population by race and ethnicity. These population estimates
could be employed to weight the sample in further statistical analyses. This use of weights, it
should be noted, is unusual. Normally, weights are designed into a study, as a means for increas-
ing the representation of small groups or groups of special interest. In contrast, in RDS, the
weights are computed after the data has been collected, based on such factors as differences in
network size and homophily that determine which groups are under or over-sampled. For
example, in a previous study of injection drug users (Heckathorn, et al. 1999), it was found
that both HIV positive injectors, and those whose frequency of injection was especially high,
tended to be over-sampled because they had especially large networks.

The formal modeling on which the RDS method is based points to additional sources of
sampling bias that can be investigated in further studies, areas in which applications of the
method can be expected to be most and least fruitful, and potential areas of further theoretic
elaboration. As noted above, a prerequisite for the use of any chain-referral method is that the
target population be linked by a contact pattern. That is, members must know one another as
members of the population. A further limitation is that the sample should be small relative to the
population. Respondents can be recruited only once, so recruitment in effect depletes the pop-
ulation. Hence, the sampling-with-replacement model implicit in the Markov and reciprocity
models is a reasonable approximation for large and densely connected populations, but not for
populations that are either small or sparsely connected, for each recruitment then significantly

3. Custom software for Windows 95/98 written by the author implements the analyses described in this paper,
including the Markov, homophily and reciprocity models, and computation of standard errors. The pregram analyzes
systems with up to eight groups, and includes sample data on injection drug users for four variables (race/ethnicity, gen-
der, HIV siatus, and homelessness) from each of three sites (New Londen, Middletown, and Meridien, Connecticnt),
This software is available free from the author.
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depletes the further recruitment opportunities for both the recruiter and those with whom the
recruiter is connected. A subsequent paper will examine depletion effects and thereby extend
the sampling method for use in smaller and sparser populations. A related limitation derives
from the assumption that transition probabilities are stable. Ideally, sampling should proceed
quickly enough for this assumption to be plausible, and if not, analyses comparing early and
late recruits should test for instabilities in transition probabilities due to secular trends or other
factors. Further analysis will also be required to determine whether data smoothing or a statis-
tically based approach such as linear least squares is most appropriate, and if the latter is used,
whether it should employ ordinary least squares, partial least squares, or some other method.
Given the crucial role of self-reported network size for the reciprocity model, improved means
for measuring network size and determining its level of reliability are also important, as are
means for assessing the effects of within-group variations in network size. Finally, the standard
error of the population estimates should be derived analytically rather than through simulation .

Because of its reliance on behavioral contact tracing, RDS represents a compromise between
the large-scale community studies that once played a focal role in the discipline {Lynd and
Lynd 1929), and the survey-based probability samples that are now dominant. The former
analyzed individuals in the social structures in which they were embedded, including the
groups and associations that served as the focal points for affiliation. In contrast, probability
sampling pulls individuais out of these structures, and the information that is retrievable
regarding relationships with others is limited to self-reports, Hence, these latter methods are
limited to the information respondents possess regarding those with whom they interact.

The advantage of tracing network linkages behaviorally, as in RDS, derives not merely
from concerns about the validity and reliability of self-reports. It also permits the investigation
of affiliation patterns based on types of information that are not shared among respondents.
For example, information regarding HIV status is frequently not shared among injectors, but
RDS can be used to study affiliation patterns based on HIV status (see Heckathorn, et al. 1999,
in which HIV status was determined for each respondent, and the social ties linking them
were established behaviorally, through recruitment relationships). Such studies can investi-
gate affiliation patterns of which the respondents themselves are unaware, Similarly, affilia-
tion patterns can be studied regarding concepts, such as self-efficacy, that are not meaningful
to respondents.

A final advantage of RDS is that it provides not merely a sample, but also data about the
social structure in which respondents are embedded, where social structure is defined, consis-
tent with Simmel (1955) and with Blau's (1977) macrostructural theory, in terms of patterns
of affiliation. According to that definition, in an unstructured system affiliations are formed
randomly, that is, homophily is zero. Structure emerges when affiliations are formed nonran-
domly, When ties are based on similarity (e.g., friendships among persons similar in education
or ethnicity), the result is homophily. When ties are formed based on complementarity or dif-
ference (e.g., exogamous marriage norms or heterosexual relationships), the result is hetero-
phily. Thus, according to this conceptualization of social structure, homophily and heterophily
are the elements out of which social structures are built. The concept of affiliation can be for-
malized through an extension of the homophily model, if homophily is conceived as affilia-
tion to one’s own group. The affiliation between any two groups, X and Y, A, . therefore, can
be defined as follows:

P, =-S5, .
Axy = H If Py < Sxy
¥ (19}
S — P, .
X}’Tyy If Py > Sxy
Affiliation is positive if P, < §,,. indicating that the proportion of ties to the group is greater

than that group’s proportional size. Affiliation is negative if P, > §,,. indicating that the pro-
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Table 3 « Affiliation by Race/Ethnicity and Gender

A: Affiliation Index by Race and

Ethnicity Target of Affiliation

Source of affiliation White Hispanic Black Other
Non-Hispanic white 0.430 —0.604 —0.163 0.008
Hispanic —0.431 0.288 0.01 0.057
Noen-Hispanic black —-0.27 —0.32 0.303 -1
Other —0.048 0.176 -1 -1

B: Affiliation Index by Gender Targei of Affiliation

Seurce of Affiliation Female Male

Female 0.018 -0.018

Male —0.355 0.355

portion of ties to the group is less than that group’s proportional size. By this definition, if a
group forms ties only with another group, the former group’s affiliation to the latter is perfect
jie.if 5, = 1, then A, = 1), if a group never forms ties with another group, affiliation is
minimal (i.e., if 5, = 0, A = —1}, and if a group forms ties only in proportion to the group’s
representation in the population, affiliation is zero (i, if S =P, A = 0).

Were affiliations formed randomly, irrespective of group membership, affiliation indexes
would be zero. Alternatively, were affiliations formed in the manner assumed by the Fararo
and Sunshine {1964), in which ties within the group reflect homophily, and ties with out-
group members are formed in exact proportion to group size, levels of affiliation would be
uniform across out-groups, and that level of out-group affiliation would equal the inverse of
the group’s homophily. Examination of affiliation data from the race/ethnicity analysis (see
Table 3A) shows that this assumption does not hold. Instead, affiliation levels with out-groups

are variable. For example, Hispanics are socially distant from whites (A, = —.431), but have
a near neutral affiliation toward blacks (A, = .01}. In contrast, blacks have rather uniformly
negative affiliations toward Hispanics {A,, = —.32) and whites (A, = —.27). Note also, that

affiliations need not be the same in both directions (e.g. the affiiation from Hispanics to
blacks is neurral, yet affiliation from blacks to Hispanics is negative). As a result, the social struc-
ture of race/ethnicity is rather complex. Only in the simplest case, where there are only two cat-
egories, does the affiliation with the out-group equal the inverse of homophily (see Table 3B,
where the self-affiliation of each gender is the inverse of affiliation to the other gender).

By providing a measure for affiliation, RDS offers a means for studying sodial structure. When
RDS is viewed exclusively as a sampling method, affiliation is taken into account only so its poten-
tial biasing effects can be quantified and controlled. In contrast, when RDS is used as a means to
study social structure, the ability to measure affiliation and to thereby quantitatively specify social
structure becomes the essential focus. A sampling method that must take into account the poten-
tially biasing effects of sodial structure thereby becomes also a method for studying that structure.

Appendix: Extending Theorem 4 to Systems
with More Than Two Groups

Consider first a three-category system. Let x, v, and z be the smoothed number of recruit-
ments across categories A and B, A and C. and B and C, respectively. For exampl> As recruited x




32

HECKATHORN

Bs, and Bs also recruiled x As. Similarly. let i, j, and k be the total number of recruits by mem-
bers of A, B, and C, respectively. This suffices to specify the recruitment matrix, The number
of As recruited by Asisi — x —y, s0 §,, = (i — x — y)/i. Similarly, S, = x/i, 5, = y/i. and the
rest of the recruitment matrix is derived in the same manner. Consistent with equation 1, the
equilibrium sampling distribution can be derived by solving the following system of equations:

1 = F,+E, +E

_i—x—y X ¥
E, = ———=F, +=-E, +=F.
a ] [ j b P (a)
E, = “;Ed +AQ(_;ZEh + %E{,
The solution to this system of equations is,
i
E,= ——
itk
-
E, i+j+k )
k
E = —
iV R

The reciprocity-model-based population estimate can be derived in a similar manner.
Given that network sizes are assumed to be equal, let N and N_ equal N,. This, plus the above
specified recruitment matrix for reciprocity-compatible systems, suffices to specily the model.
Consistent with equation 10, the population cstimate can be derived by solving the {ollowing
system of equations:

| =P, +P,+P

o
Z
i
1

aax PbNX

i u} {c)

y _ X
Y = PN
PN:' Nag

The solution to this system of equation is,

i

ERNEREY:
-

Py i+i+k (d)
_ k

it jtk

Note that this solution is identical to the equilibrium distribution. Therelore, if network sizes
are equal, E = P. Furthermore, the structure of the solution suggests, and analyses confirm,
that the conclusion extends to the general case. For example, in a system with M groups and
when m is the total number of group M’s recruits, E, = i/(i + j + k + ... + m), and P, = i/{i +
j+k+ ...+ m), sothe equilibrium and population distributions remain the same,
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